v0.21.1-fastapi
This commit is contained in:
@@ -13,12 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
import logging
|
||||
from abc import ABC
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from urllib.parse import urljoin
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
@@ -38,6 +42,7 @@ class Base(ABC):
|
||||
self.is_tools = False
|
||||
self.tools = []
|
||||
self.toolcall_sessions = {}
|
||||
self.extra_body = None
|
||||
|
||||
def describe(self, image):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
@@ -45,7 +50,7 @@ class Base(ABC):
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "system", "content": system})
|
||||
@@ -73,24 +78,26 @@ class Base(ABC):
|
||||
})
|
||||
return pmpt
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat(self, system, history, gen_conf, images=None, **kwargs):
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images)
|
||||
messages=self._form_history(system, history, images),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
|
||||
ans = ""
|
||||
tk_count = 0
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
stream=True
|
||||
stream=True,
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
for resp in response:
|
||||
if not resp.choices[0].delta.content:
|
||||
@@ -167,6 +174,7 @@ class GptV4(Base):
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.openai.com/v1"
|
||||
self.api_key = key
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
@@ -177,6 +185,7 @@ class GptV4(Base):
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.prompt(b64),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return res.choices[0].message.content.strip(), total_token_count_from_response(res)
|
||||
|
||||
@@ -185,6 +194,7 @@ class GptV4(Base):
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.vision_llm_prompt(b64, prompt),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return res.choices[0].message.content.strip(),total_token_count_from_response(res)
|
||||
|
||||
@@ -218,6 +228,61 @@ class QWenCV(GptV4):
|
||||
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
|
||||
if video_bytes:
|
||||
try:
|
||||
summary, summary_num_tokens = self._process_video(video_bytes, filename)
|
||||
return summary, summary_num_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
return "**ERROR**: Method chat not supported yet.", 0
|
||||
|
||||
def _process_video(self, video_bytes, filename):
|
||||
from dashscope import MultiModalConversation
|
||||
|
||||
video_suffix = Path(filename).suffix or ".mp4"
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
|
||||
tmp.write(video_bytes)
|
||||
tmp_path = tmp.name
|
||||
|
||||
video_path = f"file://{tmp_path}"
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"video": video_path,
|
||||
"fps": 2,
|
||||
},
|
||||
{
|
||||
"text": "Please summarize this video in proper sentences.",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
def call_api():
|
||||
response = MultiModalConversation.call(
|
||||
api_key=self.api_key,
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
)
|
||||
summary = response["output"]["choices"][0]["message"].content[0]["text"]
|
||||
return summary, num_tokens_from_string(summary)
|
||||
|
||||
try:
|
||||
return call_api()
|
||||
except Exception as e1:
|
||||
import dashscope
|
||||
|
||||
dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
|
||||
try:
|
||||
return call_api()
|
||||
except Exception as e2:
|
||||
raise RuntimeError(f"Both default and intl endpoint failed.\nFirst error: {e1}\nSecond error: {e2}")
|
||||
|
||||
|
||||
|
||||
class HunyuanCV(GptV4):
|
||||
_FACTORY_NAME = "Tencent Hunyuan"
|
||||
@@ -249,6 +314,17 @@ class StepFunCV(GptV4):
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
class VolcEngineCV(GptV4):
|
||||
_FACTORY_NAME = "VolcEngine"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://ark.cn-beijing.volces.com/api/v3"
|
||||
ark_api_key = json.loads(key).get("ark_api_key", "")
|
||||
self.client = OpenAI(api_key=ark_api_key, base_url=base_url)
|
||||
self.model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
class LmStudioCV(GptV4):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
@@ -327,10 +403,27 @@ class OpenRouterCV(GptV4):
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
api_key = json.loads(key).get("api_key", "")
|
||||
self.client = OpenAI(api_key=api_key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
provider_order = json.loads(key).get("provider_order", "")
|
||||
self.extra_body = {}
|
||||
if provider_order:
|
||||
def _to_order_list(x):
|
||||
if x is None:
|
||||
return []
|
||||
if isinstance(x, str):
|
||||
return [s.strip() for s in x.split(",") if s.strip()]
|
||||
if isinstance(x, (list, tuple)):
|
||||
return [str(s).strip() for s in x if str(s).strip()]
|
||||
return []
|
||||
provider_cfg = {}
|
||||
provider_order = _to_order_list(provider_order)
|
||||
provider_cfg["order"] = provider_order
|
||||
provider_cfg["allow_fallbacks"] = False
|
||||
self.extra_body["provider"] = provider_cfg
|
||||
|
||||
|
||||
class LocalAICV(GptV4):
|
||||
@@ -413,7 +506,7 @@ class OllamaCV(Base):
|
||||
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
||||
return options
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = deepcopy(history)
|
||||
if system and hist[0]["role"] == "user":
|
||||
hist.insert(0, {"role": "system", "content": system})
|
||||
@@ -454,7 +547,7 @@ class OllamaCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
try:
|
||||
response = self.client.chat(
|
||||
model=self.model_name,
|
||||
@@ -468,7 +561,7 @@ class OllamaCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
ans = ""
|
||||
try:
|
||||
response = self.client.chat(
|
||||
@@ -496,13 +589,14 @@ class GeminiCV(Base):
|
||||
|
||||
client.configure(api_key=key)
|
||||
_client = client.get_default_generative_client()
|
||||
self.api_key=key
|
||||
self.model_name = model_name
|
||||
self.model = GenerativeModel(model_name=self.model_name)
|
||||
self.model._client = _client
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "user", "parts": [system, history[0]["content"]]})
|
||||
@@ -538,7 +632,15 @@ class GeminiCV(Base):
|
||||
res = self.model.generate_content(input)
|
||||
return res.text, total_token_count_from_response(res)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
|
||||
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
|
||||
if video_bytes:
|
||||
try:
|
||||
summary, summary_num_tokens = self._process_video(video_bytes, filename)
|
||||
return summary, summary_num_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
@@ -549,7 +651,7 @@ class GeminiCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
ans = ""
|
||||
response = None
|
||||
try:
|
||||
@@ -570,6 +672,46 @@ class GeminiCV(Base):
|
||||
|
||||
yield total_token_count_from_response(response)
|
||||
|
||||
def _process_video(self, video_bytes, filename):
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
|
||||
video_size_mb = len(video_bytes) / (1024 * 1024)
|
||||
client = genai.Client(api_key=self.api_key)
|
||||
|
||||
tmp_path = None
|
||||
try:
|
||||
if video_size_mb <= 20:
|
||||
response = client.models.generate_content(
|
||||
model="models/gemini-2.5-flash",
|
||||
contents=types.Content(parts=[
|
||||
types.Part(inline_data=types.Blob(data=video_bytes, mime_type="video/mp4")),
|
||||
types.Part(text="Please summarize the video in proper sentences.")
|
||||
])
|
||||
)
|
||||
else:
|
||||
logging.info(f"Video size {video_size_mb:.2f}MB exceeds 20MB. Using Files API...")
|
||||
video_suffix = Path(filename).suffix or ".mp4"
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
|
||||
tmp.write(video_bytes)
|
||||
tmp_path = Path(tmp.name)
|
||||
uploaded_file = client.files.upload(file=tmp_path)
|
||||
|
||||
response = client.models.generate_content(
|
||||
model="gemini-2.5-flash",
|
||||
contents=[uploaded_file, "Please summarize this video in proper sentences."]
|
||||
)
|
||||
|
||||
summary = response.text or ""
|
||||
logging.info(f"Video summarized: {summary[:32]}...")
|
||||
return summary, num_tokens_from_string(summary)
|
||||
except Exception as e:
|
||||
logging.error(f"Video processing failed: {e}")
|
||||
raise
|
||||
finally:
|
||||
if tmp_path and tmp_path.exists():
|
||||
tmp_path.unlink()
|
||||
|
||||
|
||||
class NvidiaCV(Base):
|
||||
_FACTORY_NAME = "NVIDIA"
|
||||
@@ -614,7 +756,7 @@ class NvidiaCV(Base):
|
||||
response = response.json()
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response),
|
||||
)
|
||||
|
||||
def _request(self, msg, gen_conf={}):
|
||||
@@ -637,26 +779,26 @@ class NvidiaCV(Base):
|
||||
response = self._request(vision_prompt)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat(self, system, history, gen_conf, images=None, **kwargs):
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
total_tokens += total_token_count_from_response(response)
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
@@ -716,7 +858,7 @@ class AnthropicCV(Base):
|
||||
gen_conf["max_tokens"] = self.max_tokens
|
||||
return gen_conf
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
ans = ""
|
||||
try:
|
||||
@@ -737,7 +879,7 @@ class AnthropicCV(Base):
|
||||
except Exception as e:
|
||||
return ans + "\n**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
total_tokens = 0
|
||||
try:
|
||||
@@ -821,13 +963,13 @@ class GoogleCV(AnthropicCV, GeminiCV):
|
||||
else:
|
||||
return GeminiCV.describe_with_prompt(self, image, prompt)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
if "claude" in self.model_name:
|
||||
return AnthropicCV.chat(self, system, history, gen_conf, images)
|
||||
else:
|
||||
return GeminiCV.chat(self, system, history, gen_conf, images)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
if "claude" in self.model_name:
|
||||
for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
|
||||
Reference in New Issue
Block a user