优化OCR解析

This commit is contained in:
2025-11-03 10:22:28 +08:00
parent 4603a86df4
commit 3e58c3d0e9
9 changed files with 581 additions and 30 deletions

View File

@@ -25,6 +25,12 @@ import sys
import signal
from pathlib import Path
# 确保项目根目录在 sys.path 中
_current_file = Path(__file__).resolve()
_project_root = _current_file.parent.parent
if str(_project_root) not in sys.path:
sys.path.insert(0, str(_project_root))
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware

View File

@@ -20,12 +20,15 @@
可以直接作为独立模块使用。
使用方法:
from ocr import OCR
from ocr import OCR, SimplePdfParser
import cv2
ocr = OCR()
img = cv2.imread("image.jpg")
results = ocr(img)
parser = SimplePdfParser()
result = parser.parse_pdf("document.pdf")
"""
# 处理导入问题:支持直接运行和模块导入
@@ -35,3 +38,4 @@ from pathlib import Path
__all__ = ['OCR', 'TextDetector', 'TextRecognizer', 'SimplePdfParser']

View File

@@ -57,7 +57,7 @@ class ParseResponse(BaseModel):
data: Optional[dict] = None
@router.get(
@ocr_router.get(
"/health",
summary="健康检查",
description="检查OCR服务的健康状态和配置信息",
@@ -79,7 +79,7 @@ async def health_check():
}
@router.post(
@ocr_router.post(
"/parse",
response_model=ParseResponse,
summary="上传并解析PDF文件",
@@ -165,7 +165,7 @@ async def parse_pdf_endpoint(
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
@router.post(
@ocr_router.post(
"/parse/bytes",
response_model=ParseResponse,
summary="通过二进制数据解析PDF",
@@ -244,7 +244,7 @@ async def parse_pdf_bytes(
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
@router.post(
@ocr_router.post(
"/parse/path",
response_model=ParseResponse,
summary="通过文件路径解析PDF",
@@ -315,7 +315,7 @@ async def parse_pdf_path(
)
@router.post(
@ocr_router.post(
"/parse_into_bboxes",
summary="解析PDF并返回边界框",
description="解析PDF文件并返回文本边界框信息用于文档结构化处理",
@@ -414,7 +414,7 @@ class RemoveTagResponse(BaseModel):
text: Optional[str] = None
@router.post(
@ocr_router.post(
"/remove_tag",
response_model=RemoveTagResponse,
summary="移除文本中的位置标签",
@@ -464,7 +464,7 @@ class ExtractPositionsResponse(BaseModel):
positions: Optional[list] = None
@router.post(
@ocr_router.post(
"/extract_positions",
response_model=ExtractPositionsResponse,
summary="从文本中提取位置信息",

239
ocr/client.py Normal file
View File

@@ -0,0 +1,239 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
OCR HTTP 客户端工具类
用于通过 HTTP 接口调用 OCR 服务
"""
import logging
import os
from typing import Optional, Callable, List, Tuple, Any
try:
import httpx
HAS_HTTPX = True
except ImportError:
HAS_HTTPX = False
import aiohttp
logger = logging.getLogger(__name__)
class OCRClient:
"""OCR HTTP 客户端,用于调用 OCR API"""
def __init__(self, base_url: Optional[str] = None, timeout: float = 300.0):
"""
初始化 OCR 客户端
Args:
base_url: OCR 服务的基础 URL如果不提供则从环境变量 OCR_SERVICE_URL 获取,
如果仍未设置则默认为 http://localhost:8000/api/v1/ocr
timeout: 请求超时时间(秒),默认 300 秒
"""
self.base_url = base_url or os.getenv("OCR_SERVICE_URL", "http://localhost:8000/api/v1/ocr")
self.timeout = timeout
# 移除末尾的斜杠
if self.base_url.endswith('/'):
self.base_url = self.base_url.rstrip('/')
async def _make_request(self, method: str, endpoint: str, **kwargs) -> dict:
"""内部方法:发送 HTTP 请求"""
url = f"{self.base_url}{endpoint}"
if HAS_HTTPX:
async with httpx.AsyncClient(timeout=self.timeout) as client:
response = await client.request(method, url, **kwargs)
response.raise_for_status()
return response.json()
else:
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=self.timeout)) as session:
async with session.request(method, url, **kwargs) as response:
response.raise_for_status()
return await response.json()
async def remove_tag(self, text: str) -> str:
"""
移除文本中的位置标签
Args:
text: 包含位置标签的文本
Returns:
移除标签后的文本
"""
response = await self._make_request(
"POST",
"/remove_tag",
json={"text": text}
)
if response.get("success") and response.get("text") is not None:
return response["text"]
raise Exception(f"移除标签失败: {response.get('message', '未知错误')}")
def remove_tag_sync(self, text: str) -> str:
"""
同步版本的 remove_tag用于同步代码
Args:
text: 包含位置标签的文本
Returns:
移除标签后的文本
"""
import asyncio
try:
loop = asyncio.get_event_loop()
return loop.run_until_complete(self.remove_tag(text))
except RuntimeError:
# 如果没有事件循环,创建一个新的
return asyncio.run(self.remove_tag(text))
async def extract_positions(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""
从文本中提取位置信息
Args:
text: 包含位置标签的文本
Returns:
位置信息列表,格式为 [(页码列表, left, right, top, bottom), ...]
"""
response = await self._make_request(
"POST",
"/extract_positions",
json={"text": text}
)
if response.get("success") and response.get("positions") is not None:
# 将响应格式转换为原始格式
positions = []
for pos in response["positions"]:
positions.append((
pos["page_numbers"],
pos["left"],
pos["right"],
pos["top"],
pos["bottom"]
))
return positions
raise Exception(f"提取位置信息失败: {response.get('message', '未知错误')}")
def extract_positions_sync(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""
同步版本的 extract_positions用于同步代码
Args:
text: 包含位置标签的文本
Returns:
位置信息列表
"""
import asyncio
try:
loop = asyncio.get_event_loop()
return loop.run_until_complete(self.extract_positions(text))
except RuntimeError:
return asyncio.run(self.extract_positions(text))
async def parse_into_bboxes(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""
解析 PDF 并返回边界框
Args:
pdf_bytes: PDF 文件的二进制数据
callback: 进度回调函数 (progress: float, message: str) -> None
zoomin: 图像放大倍数1-5默认为3
filename: 文件名(仅用于日志)
Returns:
边界框列表
"""
if HAS_HTTPX:
async with httpx.AsyncClient(timeout=self.timeout) as client:
# 注意httpx 需要将文件和数据合并到 files 参数中
form_data = {"filename": filename, "zoomin": str(zoomin)}
form_files = {"pdf_bytes": (filename, pdf_bytes, "application/pdf")}
response = await client.post(
f"{self.base_url}/parse_into_bboxes",
files=form_files,
data=form_data
)
response.raise_for_status()
result = response.json()
else:
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=self.timeout)) as session:
form_data = aiohttp.FormData()
form_data.add_field('pdf_bytes', pdf_bytes, filename=filename, content_type='application/pdf')
form_data.add_field('filename', filename)
form_data.add_field('zoomin', str(zoomin))
async with session.post(
f"{self.base_url}/parse_into_bboxes",
data=form_data
) as response:
response.raise_for_status()
result = await response.json()
if result.get("success") and result.get("data") and result["data"].get("bboxes"):
return result["data"]["bboxes"]
raise Exception(f"解析 PDF 失败: {result.get('message', '未知错误')}")
def parse_into_bboxes_sync(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""
同步版本的 parse_into_bboxes用于同步代码
Args:
pdf_bytes: PDF 文件的二进制数据
callback: 进度回调函数注意HTTP 调用中无法实时传递回调,此参数将被忽略)
zoomin: 图像放大倍数1-5默认为3
filename: 文件名(仅用于日志)
Returns:
边界框列表
"""
if callback:
logger.warning("HTTP 调用中无法使用 callback将忽略回调函数")
import asyncio
try:
loop = asyncio.get_event_loop()
return loop.run_until_complete(self.parse_into_bboxes(pdf_bytes, None, zoomin, filename))
except RuntimeError:
return asyncio.run(self.parse_into_bboxes(pdf_bytes, None, zoomin, filename))
# 全局客户端实例(懒加载)
_global_client: Optional[OCRClient] = None
def get_ocr_client() -> OCRClient:
"""获取全局 OCR 客户端实例(单例模式)"""
global _global_client
if _global_client is None:
_global_client = OCRClient()
return _global_client

290
ocr/service.py Normal file
View File

@@ -0,0 +1,290 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
OCR 服务统一接口
支持本地OCR模型和HTTP接口两种方式可通过配置选择
"""
import logging
import os
from abc import ABC, abstractmethod
from typing import Optional, Callable, List, Tuple, Any
logger = logging.getLogger(__name__)
class OCRService(ABC):
"""OCR服务抽象接口"""
@abstractmethod
async def remove_tag(self, text: str) -> str:
"""
移除文本中的位置标签
Args:
text: 包含位置标签的文本
Returns:
清理后的文本
"""
pass
@abstractmethod
def remove_tag_sync(self, text: str) -> str:
"""
同步版本的 remove_tag用于同步代码
Args:
text: 包含位置标签的文本
Returns:
清理后的文本
"""
pass
@abstractmethod
async def extract_positions(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""
从文本中提取位置信息
Args:
text: 包含位置标签的文本
Returns:
位置信息列表,格式为 [(页码列表, left, right, top, bottom), ...]
"""
pass
@abstractmethod
def extract_positions_sync(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""
同步版本的 extract_positions用于同步代码
Args:
text: 包含位置标签的文本
Returns:
位置信息列表
"""
pass
@abstractmethod
async def parse_into_bboxes(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""
解析 PDF 并返回边界框
Args:
pdf_bytes: PDF 文件的二进制数据
callback: 进度回调函数 (progress: float, message: str) -> None
zoomin: 图像放大倍数1-5默认为3
filename: 文件名(仅用于日志)
Returns:
边界框列表
"""
pass
@abstractmethod
def parse_into_bboxes_sync(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""
同步版本的 parse_into_bboxes用于同步代码
Args:
pdf_bytes: PDF 文件的二进制数据
callback: 进度回调函数注意HTTP 调用中无法实时传递回调,此参数将被忽略)
zoomin: 图像放大倍数1-5默认为3
filename: 文件名(仅用于日志)
Returns:
边界框列表
"""
pass
class LocalOCRService(OCRService):
"""本地OCR服务实现直接调用本地OCR模型"""
def __init__(self, parser_instance=None):
"""
初始化本地OCR服务
Args:
parser_instance: SimplePdfParser 实例,如果不提供则自动创建
"""
if parser_instance is None:
from ocr import SimplePdfParser
from ocr.config import MODEL_DIR
logger.info(f"Initializing local OCR parser with model_dir={MODEL_DIR}")
self.parser = SimplePdfParser(model_dir=MODEL_DIR)
else:
self.parser = parser_instance
async def remove_tag(self, text: str) -> str:
"""使用本地解析器的静态方法移除标签"""
# SimplePdfParser.remove_tag 是静态方法,可以直接调用
return self.parser.remove_tag(text)
def remove_tag_sync(self, text: str) -> str:
"""同步版本的 remove_tag"""
return self.parser.remove_tag(text)
async def extract_positions(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""使用本地解析器的静态方法提取位置"""
# SimplePdfParser.extract_positions 是静态方法,可以直接调用
return self.parser.extract_positions(text)
def extract_positions_sync(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""同步版本的 extract_positions"""
return self.parser.extract_positions(text)
async def parse_into_bboxes(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""使用本地解析器解析PDF"""
# 本地解析器可以直接接受BytesIO
import asyncio
from io import BytesIO
# 在后台线程中运行同步方法
loop = asyncio.get_event_loop()
bboxes = await loop.run_in_executor(
None,
lambda: self.parser.parse_into_bboxes(BytesIO(pdf_bytes), callback=callback, zoomin=zoomin)
)
return bboxes
def parse_into_bboxes_sync(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""同步版本的 parse_into_bboxes"""
from io import BytesIO
# 本地解析器可以直接接受BytesIO
return self.parser.parse_into_bboxes(BytesIO(pdf_bytes), callback=callback, zoomin=zoomin)
class HTTPOCRService(OCRService):
"""HTTP OCR服务实现通过HTTP接口调用OCR服务"""
def __init__(self, base_url: Optional[str] = None, timeout: float = 300.0):
"""
初始化HTTP OCR服务
Args:
base_url: OCR 服务的基础 URL如果不提供则从环境变量 OCR_SERVICE_URL 获取
timeout: 请求超时时间(秒),默认 300 秒
"""
from ocr.client import OCRClient
self.client = OCRClient(base_url=base_url, timeout=timeout)
async def remove_tag(self, text: str) -> str:
"""通过HTTP接口移除标签"""
return await self.client.remove_tag(text)
def remove_tag_sync(self, text: str) -> str:
"""同步版本的 remove_tag"""
return self.client.remove_tag_sync(text)
async def extract_positions(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""通过HTTP接口提取位置"""
return await self.client.extract_positions(text)
def extract_positions_sync(self, text: str) -> List[Tuple[List[int], float, float, float, float]]:
"""同步版本的 extract_positions"""
return self.client.extract_positions_sync(text)
async def parse_into_bboxes(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""通过HTTP接口解析PDF"""
return await self.client.parse_into_bboxes(pdf_bytes, callback, zoomin, filename)
def parse_into_bboxes_sync(
self,
pdf_bytes: bytes,
callback: Optional[Callable[[float, str], None]] = None,
zoomin: int = 3,
filename: str = "document.pdf"
) -> List[dict]:
"""同步版本的 parse_into_bboxes"""
return self.client.parse_into_bboxes_sync(pdf_bytes, callback, zoomin, filename)
# 全局服务实例(懒加载)
_global_service: Optional[OCRService] = None
def get_ocr_service() -> OCRService:
"""
获取全局 OCR 服务实例(单例模式)
根据环境变量 OCR_MODE 选择使用本地或HTTP方式
- OCR_MODE=local 或未设置使用本地OCR模型
- OCR_MODE=http使用HTTP接口
也可以通过环境变量 OCR_SERVICE_URL 配置HTTP服务的地址仅在OCR_MODE=http时生效
Returns:
OCRService 实例
"""
global _global_service
if _global_service is None:
ocr_mode = os.getenv("OCR_MODE", "local").lower()
if ocr_mode == "http":
base_url = os.getenv("OCR_SERVICE_URL", "http://localhost:8000/api/v1/ocr")
logger.info(f"Initializing HTTP OCR service with URL: {base_url}")
_global_service = HTTPOCRService(base_url=base_url)
else:
logger.info("Initializing local OCR service")
_global_service = LocalOCRService()
return _global_service
# 为了向后兼容,保留 get_ocr_client 函数(但重定向到 get_ocr_service
def get_ocr_client() -> OCRService:
"""
获取OCR服务实例向后兼容函数
建议使用 get_ocr_service() 替代
Returns:
OCRService 实例
"""
return get_ocr_service()

View File

@@ -22,7 +22,7 @@ import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from ocr.service import get_ocr_service
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.hierarchical_merger.schema import HierarchicalMergerFromUpstream
from rag.nlp import concat_img
@@ -170,14 +170,17 @@ class HierarchicalMerger(ProcessBase):
cks.append(txt)
images.append(img)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
ocr_service = get_ocr_service()
processed_cks = []
for c, img in zip(cks, images):
cleaned_text = await ocr_service.remove_tag(c)
positions = await ocr_service.extract_positions(c)
processed_cks.append({
"text": cleaned_text,
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(cks, images)
]
"positions": positions,
})
cks = processed_cks
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), get_uuid())

View File

@@ -29,7 +29,8 @@ from api.db.services.llm_service import LLMBundle
from api.utils import get_uuid
from api.utils.base64_image import image2id
from deepdoc.parser import ExcelParser
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
from ocr.service import get_ocr_service
from rag.app.naive import Docx
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.parser.schema import ParserFromUpstream
@@ -204,7 +205,9 @@ class Parser(ProcessBase):
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method").lower() == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
# 注意HTTP 调用中无法传递 callbackcallback 将被忽略
ocr_service = get_ocr_service()
bboxes = ocr_service.parse_into_bboxes_sync(blob, callback=self.callback, filename=name)
elif conf.get("parse_method").lower() == "plain_text":
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]

View File

@@ -19,7 +19,7 @@ import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from ocr.service import get_ocr_service
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.splitter.schema import SplitterFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images
@@ -96,14 +96,18 @@ class Splitter(ProcessBase):
deli,
self._param.overlapped_percent,
)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
ocr_service = get_ocr_service()
cks = []
for c, img in zip(chunks, images):
if not c.strip():
continue
cleaned_text = await ocr_service.remove_tag(c)
positions = await ocr_service.extract_positions(c)
cks.append({
"text": cleaned_text,
"image": img,
"positions": [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(c)],
}
for c, img in zip(chunks, images) if c.strip()
]
"positions": [[pos[0][-1]+1, *pos[1:]] for pos in positions],
})
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), get_uuid())

View File

@@ -578,7 +578,8 @@ def hierarchical_merge(bull, sections, depth):
def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from ocr.service import get_ocr_service
ocr_service = get_ocr_service()
if not sections:
return []
if isinstance(sections, str):
@@ -598,7 +599,7 @@ def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if cks[-1] == "" or tk_nums[-1] > chunk_token_num * (100 - overlapped_percent)/100.:
if cks:
overlapped = RAGFlowPdfParser.remove_tag(cks[-1])
overlapped = ocr_service.remove_tag_sync(cks[-1])
t = overlapped[int(len(overlapped)*(100-overlapped_percent)/100.):] + t
if t.find(pos) < 0:
t += pos
@@ -625,7 +626,8 @@ def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。
def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from ocr.service import get_ocr_service
ocr_service = get_ocr_service()
if not texts or len(texts) != len(images):
return [], []
cks = [""]
@@ -642,7 +644,7 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
# Ensure that the length of the merged chunk does not exceed chunk_token_num
if cks[-1] == "" or tk_nums[-1] > chunk_token_num * (100 - overlapped_percent)/100.:
if cks:
overlapped = RAGFlowPdfParser.remove_tag(cks[-1])
overlapped = ocr_service.remove_tag_sync(cks[-1])
t = overlapped[int(len(overlapped)*(100-overlapped_percent)/100.):] + t
if t.find(pos) < 0:
t += pos