v0.21.1-fastapi
This commit is contained in:
@@ -132,8 +132,7 @@ class Base(ABC):
|
||||
"tool_choice",
|
||||
"logprobs",
|
||||
"top_logprobs",
|
||||
"extra_headers",
|
||||
"enable_thinking"
|
||||
"extra_headers"
|
||||
}
|
||||
|
||||
gen_conf = {k: v for k, v in gen_conf.items() if k in allowed_conf}
|
||||
@@ -142,6 +141,22 @@ class Base(ABC):
|
||||
|
||||
def _chat(self, history, gen_conf, **kwargs):
|
||||
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
|
||||
if self.model_name.lower().find("qwq") >= 0:
|
||||
logging.info(f"[INFO] {self.model_name} detected as reasoning model, using _chat_streamly")
|
||||
|
||||
final_ans = ""
|
||||
tol_token = 0
|
||||
for delta, tol in self._chat_streamly(history, gen_conf, with_reasoning=False, **kwargs):
|
||||
if delta.startswith("<think>") or delta.endswith("</think>"):
|
||||
continue
|
||||
final_ans += delta
|
||||
tol_token = tol
|
||||
|
||||
if len(final_ans.strip()) == 0:
|
||||
final_ans = "**ERROR**: Empty response from reasoning model"
|
||||
|
||||
return final_ans.strip(), tol_token
|
||||
|
||||
if self.model_name.lower().find("qwen3") >= 0:
|
||||
kwargs["extra_body"] = {"enable_thinking": False}
|
||||
|
||||
@@ -152,7 +167,7 @@ class Base(ABC):
|
||||
ans = response.choices[0].message.content.strip()
|
||||
if response.choices[0].finish_reason == "length":
|
||||
ans = self._length_stop(ans)
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def _chat_streamly(self, history, gen_conf, **kwargs):
|
||||
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
|
||||
@@ -178,7 +193,7 @@ class Base(ABC):
|
||||
reasoning_start = False
|
||||
ans = resp.choices[0].delta.content
|
||||
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
tol = num_tokens_from_string(resp.choices[0].delta.content)
|
||||
|
||||
@@ -268,7 +283,7 @@ class Base(ABC):
|
||||
for _ in range(self.max_rounds + 1):
|
||||
logging.info(f"{self.tools=}")
|
||||
response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf)
|
||||
tk_count += self.total_token_count(response)
|
||||
tk_count += total_token_count_from_response(response)
|
||||
if any([not response.choices, not response.choices[0].message]):
|
||||
raise Exception(f"500 response structure error. Response: {response}")
|
||||
|
||||
@@ -386,7 +401,7 @@ class Base(ABC):
|
||||
answer += resp.choices[0].delta.content
|
||||
yield resp.choices[0].delta.content
|
||||
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
||||
else:
|
||||
@@ -422,7 +437,7 @@ class Base(ABC):
|
||||
if not resp.choices[0].delta.content:
|
||||
resp.choices[0].delta.content = ""
|
||||
continue
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
||||
else:
|
||||
@@ -457,9 +472,6 @@ class Base(ABC):
|
||||
|
||||
yield total_tokens
|
||||
|
||||
def total_token_count(self, resp):
|
||||
return total_token_count_from_response(resp)
|
||||
|
||||
def _calculate_dynamic_ctx(self, history):
|
||||
"""Calculate dynamic context window size"""
|
||||
|
||||
@@ -589,7 +601,7 @@ class BaiChuanChat(Base):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
if system and history and history[0].get("role") != "system":
|
||||
@@ -612,7 +624,7 @@ class BaiChuanChat(Base):
|
||||
if not resp.choices[0].delta.content:
|
||||
resp.choices[0].delta.content = ""
|
||||
ans = resp.choices[0].delta.content
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
||||
else:
|
||||
@@ -676,9 +688,9 @@ class ZhipuChat(Base):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
tk_count = self.total_token_count(resp)
|
||||
tk_count = total_token_count_from_response(resp)
|
||||
if resp.choices[0].finish_reason == "stop":
|
||||
tk_count = self.total_token_count(resp)
|
||||
tk_count = total_token_count_from_response(resp)
|
||||
yield ans
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
@@ -797,7 +809,7 @@ class MiniMaxChat(Base):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system and history and history[0].get("role") != "system":
|
||||
@@ -832,7 +844,7 @@ class MiniMaxChat(Base):
|
||||
if "choices" in resp and "delta" in resp["choices"][0]:
|
||||
text = resp["choices"][0]["delta"]["content"]
|
||||
ans = text
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(text)
|
||||
else:
|
||||
@@ -871,7 +883,7 @@ class MistralChat(Base):
|
||||
ans += LENGTH_NOTIFICATION_CN
|
||||
else:
|
||||
ans += LENGTH_NOTIFICATION_EN
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
if system and history and history[0].get("role") != "system":
|
||||
@@ -1095,7 +1107,7 @@ class BaiduYiyanChat(Base):
|
||||
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
|
||||
response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
|
||||
ans = response["result"]
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
|
||||
@@ -1109,7 +1121,7 @@ class BaiduYiyanChat(Base):
|
||||
for resp in response:
|
||||
resp = resp.body
|
||||
ans = resp["result"]
|
||||
total_tokens = self.total_token_count(resp)
|
||||
total_tokens = total_token_count_from_response(resp)
|
||||
|
||||
yield ans
|
||||
|
||||
@@ -1150,15 +1162,13 @@ class GoogleChat(Base):
|
||||
else:
|
||||
self.client = AnthropicVertex(region=region, project_id=project_id)
|
||||
else:
|
||||
import vertexai.generative_models as glm
|
||||
from google.cloud import aiplatform
|
||||
from google import genai
|
||||
|
||||
if access_token:
|
||||
credits = service_account.Credentials.from_service_account_info(access_token)
|
||||
aiplatform.init(credentials=credits, project=project_id, location=region)
|
||||
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
|
||||
self.client = genai.Client(vertexai=True, project=project_id, location=region, credentials=credits)
|
||||
else:
|
||||
aiplatform.init(project=project_id, location=region)
|
||||
self.client = glm.GenerativeModel(model_name=self.model_name)
|
||||
self.client = genai.Client(vertexai=True, project=project_id, location=region)
|
||||
|
||||
def _clean_conf(self, gen_conf):
|
||||
if "claude" in self.model_name:
|
||||
@@ -1167,6 +1177,7 @@ class GoogleChat(Base):
|
||||
else:
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
||||
del gen_conf["max_tokens"]
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
||||
del gen_conf[k]
|
||||
@@ -1174,7 +1185,9 @@ class GoogleChat(Base):
|
||||
|
||||
def _chat(self, history, gen_conf={}, **kwargs):
|
||||
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
|
||||
|
||||
if "claude" in self.model_name:
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
messages=[h for h in history if h["role"] != "system"],
|
||||
@@ -1190,25 +1203,63 @@ class GoogleChat(Base):
|
||||
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
||||
)
|
||||
|
||||
self.client._system_instruction = system
|
||||
hist = []
|
||||
# Gemini models with google-genai SDK
|
||||
# Set default thinking_budget=0 if not specified
|
||||
if "thinking_budget" not in gen_conf:
|
||||
gen_conf["thinking_budget"] = 0
|
||||
|
||||
thinking_budget = gen_conf.pop("thinking_budget", 0)
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
|
||||
# Build GenerateContentConfig
|
||||
try:
|
||||
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
|
||||
except ImportError as e:
|
||||
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
|
||||
raise
|
||||
|
||||
config_dict = {}
|
||||
if system:
|
||||
config_dict["system_instruction"] = system
|
||||
if "temperature" in gen_conf:
|
||||
config_dict["temperature"] = gen_conf["temperature"]
|
||||
if "top_p" in gen_conf:
|
||||
config_dict["top_p"] = gen_conf["top_p"]
|
||||
if "max_output_tokens" in gen_conf:
|
||||
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
|
||||
|
||||
# Add ThinkingConfig
|
||||
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
|
||||
|
||||
config = GenerateContentConfig(**config_dict)
|
||||
|
||||
# Convert history to google-genai Content format
|
||||
contents = []
|
||||
for item in history:
|
||||
if item["role"] == "system":
|
||||
continue
|
||||
hist.append(deepcopy(item))
|
||||
item = hist[-1]
|
||||
if "role" in item and item["role"] == "assistant":
|
||||
item["role"] = "model"
|
||||
if "content" in item:
|
||||
item["parts"] = [
|
||||
{
|
||||
"text": item.pop("content"),
|
||||
}
|
||||
]
|
||||
# google-genai uses 'model' instead of 'assistant'
|
||||
role = "model" if item["role"] == "assistant" else item["role"]
|
||||
content = Content(
|
||||
role=role,
|
||||
parts=[Part(text=item["content"])]
|
||||
)
|
||||
contents.append(content)
|
||||
|
||||
response = self.client.models.generate_content(
|
||||
model=self.model_name,
|
||||
contents=contents,
|
||||
config=config
|
||||
)
|
||||
|
||||
response = self.client.generate_content(hist, generation_config=gen_conf)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
# Get token count from response
|
||||
try:
|
||||
total_tokens = response.usage_metadata.total_token_count
|
||||
except Exception:
|
||||
total_tokens = 0
|
||||
|
||||
return ans, total_tokens
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
|
||||
if "claude" in self.model_name:
|
||||
@@ -1235,28 +1286,65 @@ class GoogleChat(Base):
|
||||
|
||||
yield total_tokens
|
||||
else:
|
||||
self.client._system_instruction = system
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
||||
del gen_conf[k]
|
||||
for item in history:
|
||||
if "role" in item and item["role"] == "assistant":
|
||||
item["role"] = "model"
|
||||
if "content" in item:
|
||||
item["parts"] = item.pop("content")
|
||||
# Gemini models with google-genai SDK
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
|
||||
# Set default thinking_budget=0 if not specified
|
||||
if "thinking_budget" not in gen_conf:
|
||||
gen_conf["thinking_budget"] = 0
|
||||
|
||||
thinking_budget = gen_conf.pop("thinking_budget", 0)
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
|
||||
# Build GenerateContentConfig
|
||||
try:
|
||||
response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
|
||||
for resp in response:
|
||||
ans = resp.text
|
||||
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
|
||||
except ImportError as e:
|
||||
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
|
||||
raise
|
||||
|
||||
config_dict = {}
|
||||
if system:
|
||||
config_dict["system_instruction"] = system
|
||||
if "temperature" in gen_conf:
|
||||
config_dict["temperature"] = gen_conf["temperature"]
|
||||
if "top_p" in gen_conf:
|
||||
config_dict["top_p"] = gen_conf["top_p"]
|
||||
if "max_output_tokens" in gen_conf:
|
||||
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
|
||||
|
||||
# Add ThinkingConfig
|
||||
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
|
||||
|
||||
config = GenerateContentConfig(**config_dict)
|
||||
|
||||
# Convert history to google-genai Content format
|
||||
contents = []
|
||||
for item in history:
|
||||
# google-genai uses 'model' instead of 'assistant'
|
||||
role = "model" if item["role"] == "assistant" else item["role"]
|
||||
content = Content(
|
||||
role=role,
|
||||
parts=[Part(text=item["content"])]
|
||||
)
|
||||
contents.append(content)
|
||||
|
||||
try:
|
||||
for chunk in self.client.models.generate_content_stream(
|
||||
model=self.model_name,
|
||||
contents=contents,
|
||||
config=config
|
||||
):
|
||||
text = chunk.text
|
||||
ans = text
|
||||
total_tokens += num_tokens_from_string(text)
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class GPUStackChat(Base):
|
||||
@@ -1334,6 +1422,9 @@ class LiteLLMBase(ABC):
|
||||
self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
|
||||
self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
|
||||
self.bedrock_region = json.loads(key).get("bedrock_region", "")
|
||||
elif self.provider == SupportedLiteLLMProvider.OpenRouter:
|
||||
self.api_key = json.loads(key).get("api_key", "")
|
||||
self.provider_order = json.loads(key).get("provider_order", "")
|
||||
|
||||
def _get_delay(self):
|
||||
"""Calculate retry delay time"""
|
||||
@@ -1378,14 +1469,13 @@ class LiteLLMBase(ABC):
|
||||
timeout=self.timeout,
|
||||
)
|
||||
# response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
|
||||
|
||||
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
|
||||
return "", 0
|
||||
ans = response.choices[0].message.content.strip()
|
||||
if response.choices[0].finish_reason == "length":
|
||||
ans = self._length_stop(ans)
|
||||
|
||||
return ans, self.total_token_count(response)
|
||||
return ans, total_token_count_from_response(response)
|
||||
|
||||
def _chat_streamly(self, history, gen_conf, **kwargs):
|
||||
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
|
||||
@@ -1419,7 +1509,7 @@ class LiteLLMBase(ABC):
|
||||
reasoning_start = False
|
||||
ans = delta.content
|
||||
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
tol = num_tokens_from_string(delta.content)
|
||||
|
||||
@@ -1529,6 +1619,24 @@ class LiteLLMBase(ABC):
|
||||
"aws_region_name": self.bedrock_region,
|
||||
}
|
||||
)
|
||||
|
||||
if self.provider == SupportedLiteLLMProvider.OpenRouter:
|
||||
if self.provider_order:
|
||||
def _to_order_list(x):
|
||||
if x is None:
|
||||
return []
|
||||
if isinstance(x, str):
|
||||
return [s.strip() for s in x.split(",") if s.strip()]
|
||||
if isinstance(x, (list, tuple)):
|
||||
return [str(s).strip() for s in x if str(s).strip()]
|
||||
return []
|
||||
extra_body = {}
|
||||
provider_cfg = {}
|
||||
provider_order = _to_order_list(self.provider_order)
|
||||
provider_cfg["order"] = provider_order
|
||||
provider_cfg["allow_fallbacks"] = False
|
||||
extra_body["provider"] = provider_cfg
|
||||
completion_args.update({"extra_body": extra_body})
|
||||
return completion_args
|
||||
|
||||
def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
|
||||
@@ -1554,7 +1662,7 @@ class LiteLLMBase(ABC):
|
||||
timeout=self.timeout,
|
||||
)
|
||||
|
||||
tk_count += self.total_token_count(response)
|
||||
tk_count += total_token_count_from_response(response)
|
||||
|
||||
if not hasattr(response, "choices") or not response.choices or not response.choices[0].message:
|
||||
raise Exception(f"500 response structure error. Response: {response}")
|
||||
@@ -1686,7 +1794,7 @@ class LiteLLMBase(ABC):
|
||||
answer += delta.content
|
||||
yield delta.content
|
||||
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(delta.content)
|
||||
else:
|
||||
@@ -1735,7 +1843,7 @@ class LiteLLMBase(ABC):
|
||||
delta = resp.choices[0].delta
|
||||
if not hasattr(delta, "content") or delta.content is None:
|
||||
continue
|
||||
tol = self.total_token_count(resp)
|
||||
tol = total_token_count_from_response(resp)
|
||||
if not tol:
|
||||
total_tokens += num_tokens_from_string(delta.content)
|
||||
else:
|
||||
@@ -1769,17 +1877,6 @@ class LiteLLMBase(ABC):
|
||||
|
||||
yield total_tokens
|
||||
|
||||
def total_token_count(self, resp):
|
||||
try:
|
||||
return resp.usage.total_tokens
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
return resp["usage"]["total_tokens"]
|
||||
except Exception:
|
||||
pass
|
||||
return 0
|
||||
|
||||
def _calculate_dynamic_ctx(self, history):
|
||||
"""Calculate dynamic context window size"""
|
||||
|
||||
|
||||
@@ -13,12 +13,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
import logging
|
||||
from abc import ABC
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from urllib.parse import urljoin
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
@@ -38,6 +42,7 @@ class Base(ABC):
|
||||
self.is_tools = False
|
||||
self.tools = []
|
||||
self.toolcall_sessions = {}
|
||||
self.extra_body = None
|
||||
|
||||
def describe(self, image):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
@@ -45,7 +50,7 @@ class Base(ABC):
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "system", "content": system})
|
||||
@@ -73,24 +78,26 @@ class Base(ABC):
|
||||
})
|
||||
return pmpt
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat(self, system, history, gen_conf, images=None, **kwargs):
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images)
|
||||
messages=self._form_history(system, history, images),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
|
||||
ans = ""
|
||||
tk_count = 0
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
stream=True
|
||||
stream=True,
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
for resp in response:
|
||||
if not resp.choices[0].delta.content:
|
||||
@@ -167,6 +174,7 @@ class GptV4(Base):
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.openai.com/v1"
|
||||
self.api_key = key
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
@@ -177,6 +185,7 @@ class GptV4(Base):
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.prompt(b64),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return res.choices[0].message.content.strip(), total_token_count_from_response(res)
|
||||
|
||||
@@ -185,6 +194,7 @@ class GptV4(Base):
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.vision_llm_prompt(b64, prompt),
|
||||
extra_body=self.extra_body,
|
||||
)
|
||||
return res.choices[0].message.content.strip(),total_token_count_from_response(res)
|
||||
|
||||
@@ -218,6 +228,61 @@ class QWenCV(GptV4):
|
||||
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
|
||||
if video_bytes:
|
||||
try:
|
||||
summary, summary_num_tokens = self._process_video(video_bytes, filename)
|
||||
return summary, summary_num_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
return "**ERROR**: Method chat not supported yet.", 0
|
||||
|
||||
def _process_video(self, video_bytes, filename):
|
||||
from dashscope import MultiModalConversation
|
||||
|
||||
video_suffix = Path(filename).suffix or ".mp4"
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
|
||||
tmp.write(video_bytes)
|
||||
tmp_path = tmp.name
|
||||
|
||||
video_path = f"file://{tmp_path}"
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"video": video_path,
|
||||
"fps": 2,
|
||||
},
|
||||
{
|
||||
"text": "Please summarize this video in proper sentences.",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
def call_api():
|
||||
response = MultiModalConversation.call(
|
||||
api_key=self.api_key,
|
||||
model=self.model_name,
|
||||
messages=messages,
|
||||
)
|
||||
summary = response["output"]["choices"][0]["message"].content[0]["text"]
|
||||
return summary, num_tokens_from_string(summary)
|
||||
|
||||
try:
|
||||
return call_api()
|
||||
except Exception as e1:
|
||||
import dashscope
|
||||
|
||||
dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
|
||||
try:
|
||||
return call_api()
|
||||
except Exception as e2:
|
||||
raise RuntimeError(f"Both default and intl endpoint failed.\nFirst error: {e1}\nSecond error: {e2}")
|
||||
|
||||
|
||||
|
||||
class HunyuanCV(GptV4):
|
||||
_FACTORY_NAME = "Tencent Hunyuan"
|
||||
@@ -249,6 +314,17 @@ class StepFunCV(GptV4):
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
class VolcEngineCV(GptV4):
|
||||
_FACTORY_NAME = "VolcEngine"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://ark.cn-beijing.volces.com/api/v3"
|
||||
ark_api_key = json.loads(key).get("ark_api_key", "")
|
||||
self.client = OpenAI(api_key=ark_api_key, base_url=base_url)
|
||||
self.model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
class LmStudioCV(GptV4):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
@@ -327,10 +403,27 @@ class OpenRouterCV(GptV4):
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
api_key = json.loads(key).get("api_key", "")
|
||||
self.client = OpenAI(api_key=api_key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
provider_order = json.loads(key).get("provider_order", "")
|
||||
self.extra_body = {}
|
||||
if provider_order:
|
||||
def _to_order_list(x):
|
||||
if x is None:
|
||||
return []
|
||||
if isinstance(x, str):
|
||||
return [s.strip() for s in x.split(",") if s.strip()]
|
||||
if isinstance(x, (list, tuple)):
|
||||
return [str(s).strip() for s in x if str(s).strip()]
|
||||
return []
|
||||
provider_cfg = {}
|
||||
provider_order = _to_order_list(provider_order)
|
||||
provider_cfg["order"] = provider_order
|
||||
provider_cfg["allow_fallbacks"] = False
|
||||
self.extra_body["provider"] = provider_cfg
|
||||
|
||||
|
||||
class LocalAICV(GptV4):
|
||||
@@ -413,7 +506,7 @@ class OllamaCV(Base):
|
||||
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
||||
return options
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = deepcopy(history)
|
||||
if system and hist[0]["role"] == "user":
|
||||
hist.insert(0, {"role": "system", "content": system})
|
||||
@@ -454,7 +547,7 @@ class OllamaCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
try:
|
||||
response = self.client.chat(
|
||||
model=self.model_name,
|
||||
@@ -468,7 +561,7 @@ class OllamaCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
ans = ""
|
||||
try:
|
||||
response = self.client.chat(
|
||||
@@ -496,13 +589,14 @@ class GeminiCV(Base):
|
||||
|
||||
client.configure(api_key=key)
|
||||
_client = client.get_default_generative_client()
|
||||
self.api_key=key
|
||||
self.model_name = model_name
|
||||
self.model = GenerativeModel(model_name=self.model_name)
|
||||
self.model._client = _client
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
def _form_history(self, system, history, images=None):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "user", "parts": [system, history[0]["content"]]})
|
||||
@@ -538,7 +632,15 @@ class GeminiCV(Base):
|
||||
res = self.model.generate_content(input)
|
||||
return res.text, total_token_count_from_response(res)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
|
||||
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
|
||||
if video_bytes:
|
||||
try:
|
||||
summary, summary_num_tokens = self._process_video(video_bytes, filename)
|
||||
return summary, summary_num_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
@@ -549,7 +651,7 @@ class GeminiCV(Base):
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
ans = ""
|
||||
response = None
|
||||
try:
|
||||
@@ -570,6 +672,46 @@ class GeminiCV(Base):
|
||||
|
||||
yield total_token_count_from_response(response)
|
||||
|
||||
def _process_video(self, video_bytes, filename):
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
|
||||
video_size_mb = len(video_bytes) / (1024 * 1024)
|
||||
client = genai.Client(api_key=self.api_key)
|
||||
|
||||
tmp_path = None
|
||||
try:
|
||||
if video_size_mb <= 20:
|
||||
response = client.models.generate_content(
|
||||
model="models/gemini-2.5-flash",
|
||||
contents=types.Content(parts=[
|
||||
types.Part(inline_data=types.Blob(data=video_bytes, mime_type="video/mp4")),
|
||||
types.Part(text="Please summarize the video in proper sentences.")
|
||||
])
|
||||
)
|
||||
else:
|
||||
logging.info(f"Video size {video_size_mb:.2f}MB exceeds 20MB. Using Files API...")
|
||||
video_suffix = Path(filename).suffix or ".mp4"
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
|
||||
tmp.write(video_bytes)
|
||||
tmp_path = Path(tmp.name)
|
||||
uploaded_file = client.files.upload(file=tmp_path)
|
||||
|
||||
response = client.models.generate_content(
|
||||
model="gemini-2.5-flash",
|
||||
contents=[uploaded_file, "Please summarize this video in proper sentences."]
|
||||
)
|
||||
|
||||
summary = response.text or ""
|
||||
logging.info(f"Video summarized: {summary[:32]}...")
|
||||
return summary, num_tokens_from_string(summary)
|
||||
except Exception as e:
|
||||
logging.error(f"Video processing failed: {e}")
|
||||
raise
|
||||
finally:
|
||||
if tmp_path and tmp_path.exists():
|
||||
tmp_path.unlink()
|
||||
|
||||
|
||||
class NvidiaCV(Base):
|
||||
_FACTORY_NAME = "NVIDIA"
|
||||
@@ -614,7 +756,7 @@ class NvidiaCV(Base):
|
||||
response = response.json()
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response),
|
||||
)
|
||||
|
||||
def _request(self, msg, gen_conf={}):
|
||||
@@ -637,26 +779,26 @@ class NvidiaCV(Base):
|
||||
response = self._request(vision_prompt)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat(self, system, history, gen_conf, images=None, **kwargs):
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
total_tokens += total_token_count_from_response(response)
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
@@ -716,7 +858,7 @@ class AnthropicCV(Base):
|
||||
gen_conf["max_tokens"] = self.max_tokens
|
||||
return gen_conf
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
ans = ""
|
||||
try:
|
||||
@@ -737,7 +879,7 @@ class AnthropicCV(Base):
|
||||
except Exception as e:
|
||||
return ans + "\n**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
total_tokens = 0
|
||||
try:
|
||||
@@ -821,13 +963,13 @@ class GoogleCV(AnthropicCV, GeminiCV):
|
||||
else:
|
||||
return GeminiCV.describe_with_prompt(self, image, prompt)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
def chat(self, system, history, gen_conf, images=None):
|
||||
if "claude" in self.model_name:
|
||||
return AnthropicCV.chat(self, system, history, gen_conf, images)
|
||||
else:
|
||||
return GeminiCV.chat(self, system, history, gen_conf, images)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
def chat_streamly(self, system, history, gen_conf, images=None):
|
||||
if "claude" in self.model_name:
|
||||
for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
|
||||
@@ -234,8 +234,8 @@ class DeepInfraSeq2txt(Base):
|
||||
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
|
||||
|
||||
class CometAPISeq2txt(Base):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
@@ -244,7 +244,8 @@ class CometAPISeq2txt(Base):
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
|
||||
class DeerAPISeq2txt(Base):
|
||||
_FACTORY_NAME = "DeerAPI"
|
||||
|
||||
@@ -253,3 +254,44 @@ class DeerAPISeq2txt(Base):
|
||||
base_url = "https://api.deerapi.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
class ZhipuSeq2txt(Base):
|
||||
_FACTORY_NAME = "ZHIPU-AI"
|
||||
|
||||
def __init__(self, key, model_name="glm-asr", base_url="https://open.bigmodel.cn/api/paas/v4", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://open.bigmodel.cn/api/paas/v4"
|
||||
self.base_url = base_url
|
||||
self.api_key = key
|
||||
self.model_name = model_name
|
||||
self.gen_conf = kwargs.get("gen_conf", {})
|
||||
self.stream = kwargs.get("stream", False)
|
||||
|
||||
def transcription(self, audio_path):
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"temperature": str(self.gen_conf.get("temperature", 0.75)) or "0.75",
|
||||
"stream": self.stream,
|
||||
}
|
||||
|
||||
headers = {"Authorization": f"Bearer {self.api_key}"}
|
||||
with open(audio_path, "rb") as audio_file:
|
||||
files = {"file": audio_file}
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
url=f"{self.base_url}/audio/transcriptions",
|
||||
data=payload,
|
||||
files=files,
|
||||
headers=headers,
|
||||
)
|
||||
body = response.json()
|
||||
if response.status_code == 200:
|
||||
full_content = body["text"]
|
||||
return full_content, num_tokens_from_string(full_content)
|
||||
else:
|
||||
error = body["error"]
|
||||
return f"**ERROR**: code: {error['code']}, message: {error['message']}", 0
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
Reference in New Issue
Block a user