v0.21.1-fastapi

This commit is contained in:
2025-11-04 16:06:36 +08:00
parent 3e58c3d0e9
commit d57b5d76ae
218 changed files with 19617 additions and 72339 deletions

View File

@@ -20,11 +20,14 @@ import re
from io import BytesIO
from deepdoc.parser.utils import get_text
from rag.app import naive
from rag.nlp import bullets_category, is_english,remove_contents_table, \
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, \
tokenize_chunks
from rag.nlp import rag_tokenizer
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser
from deepdoc.parser import PdfParser, PlainParser, HtmlParser
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper,vision_figure_parser_docx_wrapper
from PIL import Image
class Pdf(PdfParser):
@@ -81,13 +84,15 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
sections, tbls = [], []
if re.search(r"\.docx$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
doc_parser = DocxParser()
doc_parser = naive.Docx()
# TODO: table of contents need to be removed
sections, tbls = doc_parser(
binary if binary else filename, from_page=from_page, to_page=to_page)
filename, binary=binary, from_page=from_page, to_page=to_page)
remove_contents_table(sections, eng=is_english(
random_choices([t for t, _ in sections], k=200)))
tbls = [((None, lns), None) for lns in tbls]
tbls=vision_figure_parser_docx_wrapper(sections=sections,tbls=tbls,callback=callback,**kwargs)
# tbls = [((None, lns), None) for lns in tbls]
sections=[(item[0],item[1] if item[1] is not None else "") for item in sections if not isinstance(item[1], Image.Image)]
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
@@ -96,6 +101,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
pdf_parser = PlainParser()
sections, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")

View File

@@ -23,6 +23,7 @@ from io import BytesIO
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level
from rag.utils import num_tokens_from_string
from deepdoc.parser import PdfParser, PlainParser, DocxParser
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper,vision_figure_parser_docx_wrapper
from docx import Document
from PIL import Image
@@ -252,7 +253,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
tk_cnt = num_tokens_from_string(txt)
if sec_id > -1:
last_sid = sec_id
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
res = tokenize_table(tbls, doc, eng)
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
return res
@@ -261,6 +262,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
docx_parser = Docx()
ti_list, tbls = docx_parser(filename, binary,
from_page=0, to_page=10000, callback=callback)
tbls=vision_figure_parser_docx_wrapper(sections=ti_list,tbls=tbls,callback=callback,**kwargs)
res = tokenize_table(tbls, doc, eng)
for text, image in ti_list:
d = copy.deepcopy(doc)

View File

@@ -16,10 +16,10 @@
import logging
import re
import os
from functools import reduce
from io import BytesIO
from timeit import default_timer as timer
from docx import Document
from docx.image.exceptions import InvalidImageStreamError, UnexpectedEndOfFileError, UnrecognizedImageError
from docx.opc.pkgreader import _SerializedRelationships, _SerializedRelationship
@@ -30,9 +30,11 @@ from tika import parser
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.utils.file_utils import extract_embed_file
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownElementExtractor, MarkdownParser, PdfParser, TxtParser
from deepdoc.parser.figure_parser import VisionFigureParser, vision_figure_parser_figure_data_wrapper
from deepdoc.parser.figure_parser import VisionFigureParser,vision_figure_parser_docx_wrapper,vision_figure_parser_pdf_wrapper
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
from deepdoc.parser.mineru_parser import MinerUParser
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_with_images, naive_merge_docx, rag_tokenizer, tokenize_chunks, tokenize_chunks_with_images, tokenize_table
@@ -256,6 +258,49 @@ class Docx(DocxParser):
tbls.append(((None, html), ""))
return new_line, tbls
def to_markdown(self, filename=None, binary=None, inline_images: bool = True):
"""
This function uses mammoth, licensed under the BSD 2-Clause License.
"""
import base64
import uuid
import mammoth
from markdownify import markdownify
docx_file = BytesIO(binary) if binary else open(filename, "rb")
def _convert_image_to_base64(image):
try:
with image.open() as image_file:
image_bytes = image_file.read()
encoded = base64.b64encode(image_bytes).decode("utf-8")
base64_url = f"data:{image.content_type};base64,{encoded}"
alt_name = "image"
alt_name = f"img_{uuid.uuid4().hex[:8]}"
return {"src": base64_url, "alt": alt_name}
except Exception as e:
logging.warning(f"Failed to convert image to base64: {e}")
return {"src": "", "alt": "image"}
try:
if inline_images:
result = mammoth.convert_to_html(docx_file, convert_image=mammoth.images.img_element(_convert_image_to_base64))
else:
result = mammoth.convert_to_html(docx_file)
html = result.value
markdown_text = markdownify(html)
return markdown_text
finally:
if not binary:
docx_file.close()
class Pdf(PdfParser):
def __init__(self):
@@ -285,7 +330,7 @@ class Pdf(PdfParser):
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
self._text_merge(zoomin=zoomin)
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
if separate_tables_figures:
@@ -297,6 +342,7 @@ class Pdf(PdfParser):
tbls = self._extract_table_figure(True, zoomin, True, True)
self._naive_vertical_merge()
self._concat_downward()
self._final_reading_order_merge()
# self._filter_forpages()
logging.info("layouts cost: {}s".format(timer() - first_start))
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
@@ -391,6 +437,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
Successive text will be sliced into pieces using 'delimiter'.
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
"""
is_english = lang.lower() == "english" # is_english(cks)
parser_config = kwargs.get(
@@ -404,27 +451,37 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
res = []
pdf_parser = None
section_images = None
is_root = kwargs.get("is_root", True)
embed_res = []
if is_root:
# Only extract embedded files at the root call
embeds = []
if binary is not None:
embeds = extract_embed_file(binary)
else:
raise Exception("Embedding extraction from file path is not supported.")
# Recursively chunk each embedded file and collect results
for embed_filename, embed_bytes in embeds:
try:
sub_res = chunk(embed_filename, binary=embed_bytes, lang=lang, callback=callback, is_root=False, **kwargs) or []
embed_res.extend(sub_res)
except Exception as e:
if callback:
callback(0.05, f"Failed to chunk embed {embed_filename}: {e}")
continue
if re.search(r"\.docx$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
# fix "There is no item named 'word/NULL' in the archive", referring to https://github.com/python-openxml/python-docx/issues/1105#issuecomment-1298075246
_SerializedRelationships.load_from_xml = load_from_xml_v2
sections, tables = Docx()(filename, binary)
if vision_model:
figures_data = vision_figure_parser_figure_data_wrapper(sections)
try:
docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
boosted_figures = docx_vision_parser(callback=callback)
tables.extend(boosted_figures)
except Exception as e:
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
tables=vision_figure_parser_docx_wrapper(sections=sections,tbls=tables,callback=callback,**kwargs)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
@@ -437,10 +494,12 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
"delimiter", "\n!?。;!?"))
if kwargs.get("section_only", False):
chunks.extend(embed_res)
return chunks
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, images))
logging.info("naive_merge({}): {}".format(filename, timer() - st))
res.extend(embed_res)
return res
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
@@ -451,29 +510,28 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if layout_recognizer == "DeepDOC":
pdf_parser = Pdf()
try:
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
if vision_model:
sections, tables, figures = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback, separate_tables_figures=True)
callback(0.5, "Basic parsing complete. Proceeding with figure enhancement...")
try:
pdf_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures, **kwargs)
boosted_figures = pdf_vision_parser(callback=callback)
tables.extend(boosted_figures)
except Exception as e:
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
tables.extend(figures)
else:
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)
tables=vision_figure_parser_pdf_wrapper(tbls=tables,callback=callback,**kwargs)
res = tokenize_table(tables, doc, is_english)
callback(0.8, "Finish parsing.")
elif layout_recognizer == "MinerU":
mineru_executable = os.environ.get("MINERU_EXECUTABLE", "mineru")
pdf_parser = MinerUParser(mineru_path=mineru_executable)
if not pdf_parser.check_installation():
callback(-1, "MinerU not found.")
return res
sections, tables = pdf_parser.parse_pdf(
filepath=filename,
binary=binary,
callback=callback,
output_dir=os.environ.get("MINERU_OUTPUT_DIR", ""),
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
)
parser_config["chunk_token_num"] = 0
callback(0.8, "Finish parsing.")
else:
if layout_recognizer == "Plain Text":
pdf_parser = PlainParser()
@@ -512,7 +570,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
except Exception:
vision_model = None
if vision_model:
# Process images for each section
section_images = []
@@ -560,7 +618,6 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
callback(0.8, f"tika.parser got empty content from {filename}.")
logging.warning(f"tika.parser got empty content from {filename}.")
return []
else:
raise NotImplementedError(
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)")
@@ -577,6 +634,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
if kwargs.get("section_only", False):
chunks.extend(embed_res)
return chunks
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, images))
@@ -586,11 +644,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
"chunk_token_num", 128)), parser_config.get(
"delimiter", "\n!?。;!?"))
if kwargs.get("section_only", False):
chunks.extend(embed_res)
return chunks
res.extend(tokenize_chunks(chunks, doc, is_english, pdf_parser))
logging.info("naive_merge({}): {}".format(filename, timer() - st))
if embed_res:
res.extend(embed_res)
return res

View File

@@ -23,6 +23,7 @@ from deepdoc.parser.utils import get_text
from rag.app import naive
from rag.nlp import rag_tokenizer, tokenize
from deepdoc.parser import PdfParser, ExcelParser, PlainParser, HtmlParser
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper,vision_figure_parser_docx_wrapper
class Pdf(PdfParser):
@@ -57,13 +58,8 @@ class Pdf(PdfParser):
sections = [(b["text"], self.get_position(b, zoomin))
for i, b in enumerate(self.boxes)]
for (img, rows), poss in tbls:
if not rows:
continue
sections.append((rows if isinstance(rows, str) else rows[0],
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (
x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None
x[-1][0][0], x[-1][0][3], x[-1][0][1]))], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000,
@@ -80,6 +76,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
if re.search(r"\.docx$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
sections, tbls = naive.Docx()(filename, binary)
tbls=vision_figure_parser_docx_wrapper(sections=sections,tbls=tbls,callback=callback,**kwargs)
sections = [s for s, _ in sections if s]
for (_, html), _ in tbls:
sections.append(html)
@@ -89,8 +86,14 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
pdf_parser = Pdf()
if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
pdf_parser = PlainParser()
sections, _ = pdf_parser(
sections, tbls = pdf_parser(
filename if not binary else binary, to_page=to_page, callback=callback)
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
for (img, rows), poss in tbls:
if not rows:
continue
sections.append((rows if isinstance(rows, str) else rows[0],
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
sections = [s for s, _ in sections if s]
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):

View File

@@ -18,12 +18,12 @@ import logging
import copy
import re
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper
from api.db import ParserType
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
from deepdoc.parser import PdfParser, PlainParser
import numpy as np
class Pdf(PdfParser):
def __init__(self):
self.model_speciess = ParserType.PAPER.value
@@ -160,6 +160,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
tbls=paper["tables"]
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
paper["tables"] = tbls
else:
raise NotImplementedError("file type not supported yet(pdf supported)")

View File

@@ -23,44 +23,62 @@ from PIL import Image
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.vision import OCR
from rag.nlp import tokenize
from rag.nlp import rag_tokenizer, tokenize
from rag.utils import clean_markdown_block
from rag.nlp import rag_tokenizer
ocr = OCR()
# Gemini supported MIME types
VIDEO_EXTS = [".mp4", ".mov", ".avi", ".flv", ".mpeg", ".mpg", ".webm", ".wmv", ".3gp", ".3gpp", ".mkv"]
def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
img = Image.open(io.BytesIO(binary)).convert('RGB')
doc = {
"docnm_kwd": filename,
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename)),
"image": img,
"doc_type_kwd": "image"
}
bxs = ocr(np.array(img))
txt = "\n".join([t[0] for _, t in bxs if t[0]])
eng = lang.lower() == "english"
callback(0.4, "Finish OCR: (%s ...)" % txt[:12])
if (eng and len(txt.split()) > 32) or len(txt) > 32:
tokenize(doc, txt, eng)
callback(0.8, "OCR results is too long to use CV LLM.")
return [doc]
try:
callback(0.4, "Use CV LLM to describe the picture.")
cv_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format='JPEG')
img_binary.seek(0)
ans = cv_mdl.describe(img_binary.read())
callback(0.8, "CV LLM respond: %s ..." % ans[:32])
txt += "\n" + ans
tokenize(doc, txt, eng)
return [doc]
except Exception as e:
callback(prog=-1, msg=str(e))
if any(filename.lower().endswith(ext) for ext in VIDEO_EXTS):
try:
doc.update({"doc_type_kwd": "video"})
cv_mdl = LLMBundle(tenant_id, llm_type=LLMType.IMAGE2TEXT, lang=lang)
ans = cv_mdl.chat(system="", history=[], gen_conf={}, video_bytes=binary, filename=filename)
callback(0.8, "CV LLM respond: %s ..." % ans[:32])
ans += "\n" + ans
tokenize(doc, ans, eng)
return [doc]
except Exception as e:
callback(prog=-1, msg=str(e))
else:
img = Image.open(io.BytesIO(binary)).convert("RGB")
doc.update(
{
"image": img,
"doc_type_kwd": "image",
}
)
bxs = ocr(np.array(img))
txt = "\n".join([t[0] for _, t in bxs if t[0]])
callback(0.4, "Finish OCR: (%s ...)" % txt[:12])
if (eng and len(txt.split()) > 32) or len(txt) > 32:
tokenize(doc, txt, eng)
callback(0.8, "OCR results is too long to use CV LLM.")
return [doc]
try:
callback(0.4, "Use CV LLM to describe the picture.")
cv_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format="JPEG")
img_binary.seek(0)
ans = cv_mdl.describe(img_binary.read())
callback(0.8, "CV LLM respond: %s ..." % ans[:32])
txt += "\n" + ans
tokenize(doc, txt, eng)
return [doc]
except Exception as e:
callback(prog=-1, msg=str(e))
return []
@@ -79,7 +97,7 @@ def vision_llm_chunk(binary, vision_model, prompt=None, callback=None):
try:
with io.BytesIO() as img_binary:
img.save(img_binary, format='JPEG')
img.save(img_binary, format="JPEG")
img_binary.seek(0)
ans = clean_markdown_block(vision_model.describe_with_prompt(img_binary.read(), prompt))
txt += "\n" + ans

View File

@@ -133,14 +133,14 @@ def label_question(question, kbs):
if tag_kb_ids:
all_tags = get_tags_from_cache(tag_kb_ids)
if not all_tags:
all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
all_tags = settings.retriever.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
set_tags_to_cache(tags=all_tags, kb_ids=tag_kb_ids)
else:
all_tags = json.loads(all_tags)
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
if not tag_kbs:
return tags
tags = settings.retrievaler.tag_query(question,
tags = settings.retriever.tag_query(question,
list(set([kb.tenant_id for kb in tag_kbs])),
tag_kb_ids,
all_tags,