182 lines
6.4 KiB
Python
182 lines
6.4 KiB
Python
"""
|
|
Azure AI Search client utilities for retrieval operations.
|
|
Contains shared functionality for interacting with Azure AI Search and embedding services.
|
|
"""
|
|
|
|
import httpx
|
|
import logging
|
|
from typing import Dict, Any, List, Optional
|
|
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
|
|
|
|
from ..config import get_config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class RetrievalAPIError(Exception):
|
|
"""Custom exception for retrieval API errors"""
|
|
pass
|
|
|
|
|
|
class AzureSearchClient:
|
|
"""Shared Azure AI Search client for embedding and search operations"""
|
|
|
|
def __init__(self):
|
|
self.config = get_config()
|
|
self.search_endpoint = self.config.retrieval.endpoint
|
|
self.api_key = self.config.retrieval.api_key
|
|
self.api_version = self.config.retrieval.api_version
|
|
self.semantic_configuration = self.config.retrieval.semantic_configuration
|
|
self.embedding_client = httpx.AsyncClient(timeout=30.0)
|
|
self.search_client = httpx.AsyncClient(timeout=30.0)
|
|
|
|
async def __aenter__(self):
|
|
return self
|
|
|
|
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
|
await self.embedding_client.aclose()
|
|
await self.search_client.aclose()
|
|
|
|
async def get_embedding(self, text: str) -> List[float]:
|
|
"""Get embedding vector for text using the configured embedding service"""
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {self.config.retrieval.embedding.api_key}"
|
|
}
|
|
|
|
payload = {
|
|
"input": text,
|
|
"model": self.config.retrieval.embedding.model
|
|
}
|
|
|
|
try:
|
|
req_url = f"{self.config.retrieval.embedding.base_url}/embeddings"
|
|
if self.config.retrieval.embedding.api_version:
|
|
req_url += f"?api-version={self.config.retrieval.embedding.api_version}"
|
|
|
|
response = await self.embedding_client.post(req_url, json=payload, headers=headers)
|
|
response.raise_for_status()
|
|
result = response.json()
|
|
return result["data"][0]["embedding"]
|
|
except Exception as e:
|
|
logger.error(f"Failed to get embedding: {e}")
|
|
raise RetrievalAPIError(f"Embedding generation failed: {str(e)}")
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((httpx.HTTPStatusError, httpx.TimeoutException))
|
|
)
|
|
async def search_azure_ai(
|
|
self,
|
|
index_name: str,
|
|
search_text: str,
|
|
vector_fields: str,
|
|
select_fields: str,
|
|
search_fields: str,
|
|
filter_query: Optional[str] = None,
|
|
top_k: int = 10,
|
|
score_threshold: float = 1.5
|
|
) -> Dict[str, Any]:
|
|
"""Make hybrid search request to Azure AI Search with semantic ranking"""
|
|
|
|
# Get embedding vector for the query
|
|
query_vector = await self.get_embedding(search_text)
|
|
|
|
# Build vector queries based on the vector fields
|
|
vector_queries = []
|
|
for field in vector_fields.split(","):
|
|
field = field.strip()
|
|
vector_queries.append({
|
|
"kind": "vector",
|
|
"vector": query_vector,
|
|
"fields": field,
|
|
"k": top_k
|
|
})
|
|
|
|
# Build the search request payload
|
|
search_payload = {
|
|
"search": search_text,
|
|
"select": select_fields,
|
|
"searchFields": search_fields,
|
|
"top": top_k,
|
|
"queryType": "semantic",
|
|
"semanticConfiguration": self.semantic_configuration,
|
|
"vectorQueries": vector_queries
|
|
}
|
|
|
|
if filter_query:
|
|
search_payload["filter"] = filter_query
|
|
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"api-key": self.api_key
|
|
}
|
|
|
|
search_url = f"{self.search_endpoint}/indexes/{index_name}/docs/search"
|
|
|
|
try:
|
|
response = await self.search_client.post(
|
|
search_url,
|
|
json=search_payload,
|
|
headers=headers,
|
|
params={"api-version": self.api_version}
|
|
)
|
|
response.raise_for_status()
|
|
result = response.json()
|
|
|
|
# Filter results by reranker score and add order numbers
|
|
filtered_results = []
|
|
for i, item in enumerate(result.get("value", [])):
|
|
reranker_score = item.get("@search.rerankerScore", 0)
|
|
if reranker_score >= score_threshold:
|
|
# Add order number
|
|
item["@order_num"] = i + 1
|
|
# Normalize the result (removes unwanted fields and empty values)
|
|
normalized_item = normalize_search_result(item)
|
|
filtered_results.append(normalized_item)
|
|
|
|
return {"value": filtered_results}
|
|
|
|
except httpx.HTTPStatusError as e:
|
|
logger.error(f"Azure AI Search HTTP error {e.response.status_code}: {e.response.text}")
|
|
raise RetrievalAPIError(f"Azure AI Search request failed: {e.response.status_code}")
|
|
except httpx.TimeoutException:
|
|
logger.error("Azure AI Search request timeout")
|
|
raise RetrievalAPIError("Azure AI Search request timeout")
|
|
except Exception as e:
|
|
logger.error(f"Azure AI Search unexpected error: {e}")
|
|
raise RetrievalAPIError(f"Azure AI Search unexpected error: {str(e)}")
|
|
|
|
|
|
def normalize_search_result(raw_result: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Normalize raw Azure AI Search result to clean dynamic structure
|
|
|
|
Args:
|
|
raw_result: Raw result from Azure AI Search
|
|
|
|
Returns:
|
|
Cleaned and normalized result dictionary
|
|
"""
|
|
# Fields to remove if they exist (belt and suspenders approach)
|
|
fields_to_remove = {
|
|
"@search.score",
|
|
"@search.rerankerScore",
|
|
"@search.captions",
|
|
"@subquery_id"
|
|
}
|
|
|
|
# Create a copy and remove unwanted fields
|
|
result = raw_result.copy()
|
|
for field in fields_to_remove:
|
|
result.pop(field, None)
|
|
|
|
# Remove empty fields (None, empty string, empty list, empty dict)
|
|
result = {
|
|
key: value for key, value in result.items()
|
|
if value is not None and value != "" and value != [] and value != {}
|
|
}
|
|
|
|
return result
|