# login AKS az cloud set --name AzureCloud # Switch CLI to Azure cloud # az login # Log in to Azure China account (browser or device code flow) az account set -s 079d8bd8-b4cc-4892-9307-aa6dedf890e9 #! set subs az aks get-credentials -g rg-aiflow-lab -n aks-aiflow-lab --overwrite-existing --file ~/.kube/config #### kubectl config use-context aks-aiflow-lab kubectl config current-context docker build . -t agentic-rag:1.0.16 docker tag agentic-rag:1.0.16 acraiflowlab.azurecr.io/agentic-rag:1.0.16 docker push acraiflowlab.azurecr.io/agentic-rag:1.0.16 # kubectl create namespace knowledge-agent kubectl delete configmap agentic-rag-config -n knowledge-agent kubectl create configmap agentic-rag-config -n knowledge-agent --from-file=config.yaml kubectl delete deployment agentic-rag -n knowledge-agent # kubectl delete ingress agentic-retrieval-ingress -n knowledge-agent # 注释掉,不要删除生产 Ingress kubectl apply -f deploy/dev/k8s-manifest.yml -n knowledge-agent # restart deployment kubectl rollout restart deployment agentic-rag -n knowledge-agent kubectl rollout status deployment/agentic-rag -n knowledge-agent kubectl get deployment agentic-rag -o wide -n knowledge-agent kubectl get pods -l app=agentic-rag -o wide -n knowledge-agent # kubectl logs -f agentic-rag -n knowledge-agent