# User Manual Agent Implementation Summary ## Overview Successfully refactored `service/graph/user_manual_rag.py` from a simple RAG node to a full autonomous agent, following the pattern from the main agent in `service/graph/graph.py`. ## Key Changes ### 1. **New Agent Node Function: `user_manual_agent_node`** - Implements the "detect-first-then-stream" strategy for optimal multi-round behavior - Supports autonomous tool calling with user manual tools - Handles streaming responses with HTML comment filtering - Manages tool rounds and conversation trimming - Uses user manual specific system prompt from configuration ### 2. **User Manual Tools Integration** - Uses `service/graph/user_manual_tools.py` for tool schemas and tools mapping - Specifically designed for user manual retrieval operations - Integrated with `retrieve_system_usermanual` tool ### 3. **Routing Logic: `user_manual_should_continue`** - Routes to `user_manual_tools` when tool calls are detected - Routes to `post_process` when no tool calls (final synthesis completed) - Routes to `user_manual_agent` for next round after tool execution ### 4. **Tool Execution: `run_user_manual_tools_with_streaming`** - Executes user manual tools with streaming support - Supports parallel execution (though typically only one tool for user manual) - Enhanced error handling with proper error categories - Streaming events for tool start, result, and error states ### 5. **System Prompt Integration** - Uses `user_manual_prompt` from `llm_prompt.yaml` configuration - Formats prompt with conversation history, context content, and current query - Maintains grounding requirements and response structure from original prompt ## Technical Implementation Details ### Agent Node Features - **Tool Round Management**: Tracks and limits tool calling rounds - **Conversation Trimming**: Manages context length automatically - **Streaming Support**: Real-time token streaming with HTML comment filtering - **Error Handling**: Comprehensive error handling with user-friendly messages - **Tool Detection**: Non-streaming detection followed by streaming synthesis ### Routing Strategy ```python def user_manual_should_continue(state: AgentState) -> Literal["user_manual_tools", "user_manual_agent", "post_process"]: # Routes based on message type and tool calls presence ``` ### Tool Execution Strategy - Parallel execution support (for future expansion) - Streaming events for real-time feedback - Error recovery with graceful fallbacks - Tool result aggregation and state management ## Configuration Integration ### User Manual Prompt Template The agent uses the existing `user_manual_prompt` from configuration with placeholders: - `{conversation_history}`: Recent conversation context - `{context_content}`: Retrieved user manual content from tools - `{current_query}`: Current user question ### Tool Configuration - Tool schemas automatically generated from user manual tools - Force tool choice enabled for autonomous operation - Tools disabled during final synthesis to prevent hallucination ## Backward Compatibility ### Legacy Function Maintained ```python async def user_manual_rag_node(state: AgentState, config: Optional[RunnableConfig] = None) -> Dict[str, Any]: """Legacy user manual RAG node - redirects to new agent-based implementation""" return await user_manual_agent_node(state, config) ``` ## Testing Results ### Functionality Tests ✅ **Basic Agent Operation**: Tool detection and calling works correctly ✅ **Tool Execution**: User manual retrieval executes successfully ✅ **Routing Logic**: Proper routing between agent, tools, and post-process ✅ **Multi-Round Workflow**: Complete workflow with tool rounds and final synthesis ✅ **Streaming Support**: Real-time response streaming with proper formatting ### Integration Tests ✅ **Configuration Loading**: User manual prompt loaded correctly ✅ **Tool Integration**: User manual tools properly integrated ✅ **Error Handling**: Graceful error handling and recovery ✅ **State Management**: Proper state updates and tracking ## Usage Example ```python # Create state for user manual query state = { "messages": [HumanMessage(content="How do I reset my password?")], "session_id": "session_1", "intent": "User_Manual_RAG", "tool_rounds": 0, "max_tool_rounds": 3 } # Execute user manual agent result = await user_manual_agent_node(state) # Handle routing routing = user_manual_should_continue(state) if routing == "user_manual_tools": tool_result = await run_user_manual_tools_with_streaming(state) ``` ## Benefits of New Implementation 1. **Autonomous Operation**: Can make multiple tool calls and synthesize final answers 2. **Better Tool Integration**: Seamless integration with user manual specific tools 3. **Streaming Support**: Real-time response generation for better UX 4. **Error Resilience**: Comprehensive error handling and recovery 5. **Scalability**: Easy to extend with additional user manual tools 6. **Consistency**: Follows same patterns as main agent for maintainability ## Files Modified - `service/graph/user_manual_rag.py` - Complete rewrite as agent node - `scripts/test_user_manual_agent.py` - New comprehensive test suite - `scripts/test_user_manual_tool.py` - Fixed import path ## Next Steps 1. **Integration Testing**: Test with main graph workflow 2. **Performance Optimization**: Monitor and optimize tool execution performance 3. **Enhanced Features**: Consider adding more user manual specific tools 4. **Documentation Update**: Update main documentation with new agent capabilities The user manual functionality has been successfully upgraded from a simple RAG implementation to a full autonomous agent while maintaining backward compatibility and following established patterns from the main agent implementation.