# LangGraph Implementation Analysis and Improvements ## Official Example vs Current Implementation ### Key Differences Found #### 1. **Graph Structure** **Official Example:** ```python workflow = StateGraph(AgentState) workflow.add_node("agent", call_model) workflow.add_node("tools", run_tools) workflow.set_entry_point("agent") workflow.add_conditional_edges("agent", should_continue, ["tools", END]) workflow.add_edge("tools", "agent") graph = workflow.compile() ``` **Current Implementation:** ```python class AgentWorkflow: def __init__(self): self.agent_node = AgentNode() self.post_process_node = PostProcessNode() async def astream(self, state, stream_callback): state = await self.agent_node(state, stream_callback) state = await self.post_process_node(state, stream_callback) ``` #### 2. **State Management** **Official Example:** ```python class AgentState(TypedDict): messages: Annotated[list, add_messages] ``` **Current Implementation:** ```python class TurnState(BaseModel): session_id: str messages: List[Message] = Field(default_factory=list) tool_results: List[ToolResult] = Field(default_factory=list) citations: List[Citation] = Field(default_factory=list) # ... many more fields ``` #### 3. **Tool Handling** **Official Example:** ```python @tool def get_stock_price(stock_symbol: str): return mock_stock_data[stock_symbol] tools = [get_stock_price] tool_node = ToolNode(tools) ``` **Current Implementation:** ```python async def _execute_tool_call(self, tool_call, state, stream_callback): async with RetrievalTools() as retrieval: if tool_name == "retrieve_standard_regulation": result = await retrieval.retrieve_standard_regulation(**tool_args) # Manual tool execution logic ``` ## Recommendations for Improvement ### 1. **Use Standard LangGraph Patterns** - Adopt `StateGraph` with `add_node()` and `add_edge()` - Use `@tool` decorators for cleaner tool definitions - Leverage `ToolNode` for automatic tool execution ### 2. **Simplify State Management** - Reduce state complexity where possible - Use LangGraph's `add_messages` helper for message handling - Keep only essential fields in the main state ### 3. **Improve Code Organization** - Separate concerns: graph definition, tool definitions, state - Use factory functions for graph creation - Follow LangGraph's recommended patterns ### 4. **Better Tool Integration** - Use `@tool` decorators for automatic schema generation - Leverage LangGraph's built-in tool execution - Reduce manual tool call handling ## Implementation Plan ### Phase 1: Create Simplified Graph (✅ Done) - `service/graph/simplified_graph.py` - follows LangGraph patterns - Uses `@tool` decorators - Cleaner state management - Reduced complexity ### Phase 2: Update Main Implementation - Refactor existing `graph.py` to use LangGraph patterns - Keep existing functionality but improve structure - Maintain backward compatibility ### Phase 3: Testing and Migration - Test simplified implementation - Gradual migration of features - Performance comparison ## Code Comparison ### Tool Definition **Before:** ```python async def _execute_tool_call(self, tool_call, state, stream_callback): tool_name = tool_call["name"] tool_args = tool_call["args"] async with RetrievalTools() as retrieval: if tool_name == "retrieve_standard_regulation": result = await retrieval.retrieve_standard_regulation(**tool_args) # 20+ lines of manual handling ``` **After:** ```python @tool async def retrieve_standard_regulation(query: str, conversation_history: str = "") -> str: async with RetrievalTools() as retrieval: result = await retrieval.retrieve_standard_regulation(query=query, conversation_history=conversation_history) return f"Found {len(result.results)} results" ``` ### Graph Creation **Before:** ```python class AgentWorkflow: def __init__(self): self.agent_node = AgentNode() self.post_process_node = PostProcessNode() ``` **After:** ```python def create_agent_graph(): workflow = StateGraph(AgentState) workflow.add_node("agent", call_model) workflow.add_node("tools", run_tools) workflow.set_entry_point("agent") workflow.add_conditional_edges("agent", should_continue, ["tools", END]) return workflow.compile() ``` ## Benefits of LangGraph Patterns 1. **Declarative**: Graph structure is explicit and easy to understand 2. **Modular**: Nodes and edges can be easily modified 3. **Testable**: Individual nodes can be tested in isolation 4. **Standard**: Follows LangGraph community conventions 5. **Maintainable**: Less custom logic, more framework features 6. **Debuggable**: LangGraph provides built-in debugging tools