Files
TERES_fastapi_backend/ocr/pdf_parser.py
2025-10-31 17:50:25 +08:00

1320 lines
55 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
简化的PDF解析器只使用OCR处理PDF文档
从 RAGFlow 的 RAGFlowPdfParser 中提取OCR相关功能移除了
- 布局识别Layout Recognition
- 表格结构识别Table Structure Recognition
- 文本合并和语义分析
- RAG相关功能
只保留:
- PDF转图片
- OCR文本检测和识别
- 基本的文本和位置信息返回
"""
from pathlib import Path
from tkinter import Image
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from pypdf import PdfReader as pdf2_read
from huggingface_hub import snapshot_download
import logging
import os
import random
import re
import sys
import threading
from copy import deepcopy
from io import BytesIO
from timeit import default_timer as timer
import numpy as np
import pdfplumber
import trio
import xgboost as xgb
from agent import settings
from deepdoc.vision import AscendLayoutRecognizer, TableStructureRecognizer, Recognizer
from deepdoc.vision.layout_recognizer import LayoutRecognizer
from ocr.utils import get_project_base_directory
from rag.nlp import rag_tokenizer
from rag.prompts.generator import vision_llm_describe_prompt
# 处理导入问题:支持直接运行和模块导入
try:
_package = __package__
except NameError:
_package = None
if _package is None:
# 直接运行时,添加父目录到路径并使用绝对导入
parent_dir = Path(__file__).parent.parent
if str(parent_dir) not in sys.path:
sys.path.insert(0, str(parent_dir))
from ocr.config import PARALLEL_DEVICES
from ocr.ocr import OCR
else:
# 作为模块导入时使用相对导入
from config import PARALLEL_DEVICES
from ocr import OCR
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
if LOCK_KEY_pdfplumber not in sys.modules:
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
class SimplePdfParser:
def __init__(self, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
self.ocr = OCR()
self.parallel_limiter = None
if PARALLEL_DEVICES > 1:
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
layout_recognizer_type = os.getenv("LAYOUT_RECOGNIZER_TYPE", "onnx").lower()
if layout_recognizer_type not in ["onnx", "ascend"]:
raise RuntimeError("Unsupported layout recognizer type.")
if hasattr(self, "model_speciess"):
recognizer_domain = "layout." + self.model_speciess
else:
recognizer_domain = "layout"
if layout_recognizer_type == "ascend":
logging.debug("Using Ascend LayoutRecognizer")
self.layouter = AscendLayoutRecognizer(recognizer_domain)
else: # onnx
logging.debug("Using Onnx LayoutRecognizer")
self.layouter = LayoutRecognizer(recognizer_domain)
self.tbl_det = TableStructureRecognizer()
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:
logging.exception("RAGFlowPdfParser __init__")
try:
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
self.page_from = 0
self.column_num = 1
def __char_width(self, c):
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
def __height(self, c):
return c["bottom"] - c["top"]
def _x_dis(self, a, b):
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]), abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
def _y_dis(self, a, b):
return (b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _match_proj(self, b):
proj_patt = [
r"第[零一二三四五六七八九十百]+章",
r"第[零一二三四五六七八九十百]+[条节]",
r"[零一二三四五六七八九十百]+[、是  ]",
r"[\(][零一二三四五六七八九十百]+[\)]",
r"[\(][0-9]+[\)]",
r"[0-9]+(、|\.[  ]||\.[^0-9./a-zA-Z_%><-]{4,})",
r"[0-9]+\.[0-9.]+(、|\.[  ])",
r"[⚫•➢①② ]",
]
return any([re.match(p, b["text"]) for p in proj_patt])
def _updown_concat_features(self, up, down):
w = max(self.__char_width(up), self.__char_width(down))
h = max(self.__height(up), self.__height(down))
y_dis = self._y_dis(up, down)
LEN = 6
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
tks_all = up["text"][-LEN:].strip() + (" " if re.match(r"[a-zA-Z0-9]+", up["text"][-1] + down["text"][0]) else "") + down["text"][:LEN].strip()
tks_all = rag_tokenizer.tokenize(tks_all).split()
fea = [
up.get("R", -1) == down.get("R", -1),
y_dis / h,
down["page_number"] - up["page_number"],
up["layout_type"] == down["layout_type"],
up["layout_type"] == "text",
down["layout_type"] == "text",
up["layout_type"] == "table",
down["layout_type"] == "table",
True if re.search(r"([。?!;!?;+)]|[a-z]\.)$", up["text"]) else False,
True if re.search(r"[“、0-9+-]$", up["text"]) else False,
True if re.search(r"(^.?[/,?;:\],。;:’”?!》】)-])", down["text"]) else False,
True if re.match(r"[\(][^\(\)]+[\)]$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"]) and re.search(r"[\)]", down["text"]) else False,
self._match_proj(down),
True if re.match(r"[A-Z]", down["text"]) else False,
True if re.match(r"[A-Z]", up["text"][-1]) else False,
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()) > 1 and len(down["text"].strip()) > 1 else False,
up["x0"] > down["x1"],
abs(self.__height(up) - self.__height(down)) / min(self.__height(up), self.__height(down)),
self._x_dis(up, down) / max(w, 0.000001),
(len(up["text"]) - len(down["text"])) / max(len(up["text"]), len(down["text"])),
len(tks_all) - len(tks_up) - len(tks_down),
len(tks_down) - len(tks_up),
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
max(down["in_row"], up["in_row"]),
abs(down["in_row"] - up["in_row"]),
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0,
]
return fea
@staticmethod
def sort_X_by_page(arr, threshold):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["page_number"], r["x0"], r["top"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold and arr[j + 1]["top"] < arr[j]["top"] and arr[j + 1]["page_number"] == arr[j]["page_number"]:
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
def _has_color(self, o):
if o.get("ncs", "") == "DeviceGray":
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and o["non_stroking_color"][0] == 1:
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
return False
return True
def _table_transformer_job(self, ZM):
logging.debug("Table processing...")
imgs, pos = [], []
tbcnt = [0]
MARGIN = 10
self.tb_cpns = []
assert len(self.page_layout) == len(self.page_images)
for p, tbls in enumerate(self.page_layout): # for page
tbls = [f for f in tbls if f["type"] == "table"]
tbcnt.append(len(tbls))
if not tbls:
continue
for tb in tbls: # for table
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left *= ZM
top *= ZM
right *= ZM
bott *= ZM
pos.append((left, top))
imgs.append(self.page_images[p].crop((left, top, right, bott)))
assert len(self.page_images) == len(tbcnt) - 1
if not imgs:
return
recos = self.tbl_det(imgs)
tbcnt = np.cumsum(tbcnt)
for i in range(len(tbcnt) - 1): # for page
pg = []
for j, tb_items in enumerate(recos[tbcnt[i] : tbcnt[i + 1]]): # for table
poss = pos[tbcnt[i] : tbcnt[i + 1]]
for it in tb_items: # for table components
it["x0"] = it["x0"] + poss[j][0]
it["x1"] = it["x1"] + poss[j][0]
it["top"] = it["top"] + poss[j][1]
it["bottom"] = it["bottom"] + poss[j][1]
for n in ["x0", "x1", "top", "bottom"]:
it[n] /= ZM
it["top"] += self.page_cum_height[i]
it["bottom"] += self.page_cum_height[i]
it["pn"] = i
it["layoutno"] = j
pg.append(it)
self.tb_cpns.extend(pg)
def gather(kwd, fzy=10, ption=0.6):
eles = Recognizer.sort_Y_firstly([r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
return Recognizer.sort_Y_firstly(eles, 0)
# add R,H,C,SP tag to boxes within table layout
headers = gather(r".*header$")
rows = gather(r".* (row|header)")
spans = gather(r".*spanning")
clmns = sorted([r for r in self.tb_cpns if re.match(r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
for b in self.boxes:
if b.get("layout_type", "") != "table":
continue
ii = Recognizer.find_overlapped_with_threshold(b, rows, thr=0.3)
if ii is not None:
b["R"] = ii
b["R_top"] = rows[ii]["top"]
b["R_bott"] = rows[ii]["bottom"]
ii = Recognizer.find_overlapped_with_threshold(b, headers, thr=0.3)
if ii is not None:
b["H_top"] = headers[ii]["top"]
b["H_bott"] = headers[ii]["bottom"]
b["H_left"] = headers[ii]["x0"]
b["H_right"] = headers[ii]["x1"]
b["H"] = ii
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
if ii is not None:
b["C"] = ii
b["C_left"] = clmns[ii]["x0"]
b["C_right"] = clmns[ii]["x1"]
ii = Recognizer.find_overlapped_with_threshold(b, spans, thr=0.3)
if ii is not None:
b["H_top"] = spans[ii]["top"]
b["H_bott"] = spans[ii]["bottom"]
b["H_left"] = spans[ii]["x0"]
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3, device_id: int | None = None):
start = timer()
bxs = self.ocr.detect(np.array(img), device_id)
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
start = timer()
if not bxs:
self.boxes.append([])
return
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = Recognizer.sort_Y_firstly(
[
{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM, "top": b[0][1] / ZM, "text": "", "txt": t, "bottom": b[-1][1] / ZM, "chars": [], "page_number": pagenum}
for b, t in bxs
if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]
],
self.mean_height[pagenum - 1] / 3,
)
# merge chars in the same rect
for c in chars:
ii = Recognizer.find_overlapped(c, bxs)
if ii is None:
self.lefted_chars.append(c)
continue
ch = c["bottom"] - c["top"]
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != " ":
self.lefted_chars.append(c)
continue
bxs[ii]["chars"].append(c)
for b in bxs:
if not b["chars"]:
del b["chars"]
continue
m_ht = np.mean([c["height"] for c in b["chars"]])
for c in Recognizer.sort_Y_firstly(b["chars"], m_ht):
if c["text"] == " " and b["text"]:
if re.match(r"[0-9a-zA-Zа-яА-Я,.?;:!%%]", b["text"][-1]):
b["text"] += " "
else:
b["text"] += c["text"]
del b["chars"]
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
start = timer()
boxes_to_reg = []
img_np = np.array(img)
for b in bxs:
if not b["text"]:
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg], device_id)
for i in range(len(boxes_to_reg)):
boxes_to_reg[i]["text"] = texts[i]
del boxes_to_reg[i]["box_image"]
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
bxs = [b for b in bxs if b["text"]]
if self.mean_height[pagenum - 1] == 0:
self.mean_height[pagenum - 1] = np.median([b["bottom"] - b["top"] for b in bxs])
self.boxes.append(bxs)
def _layouts_rec(self, ZM, drop=True):
assert len(self.page_images) == len(self.boxes)
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
# cumlative Y
for i in range(len(self.boxes)):
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
def _text_merge(self):
# merge adjusted boxes
bxs = self.boxes
def end_with(b, txt):
txt = txt.strip()
tt = b.get("text", "").strip()
return tt and tt.find(txt) == len(tt) - len(txt)
def start_with(b, txts):
tt = b.get("text", "").strip()
return tt and any([tt.find(t.strip()) == 0 for t in txts])
# horizontally merge adjacent box with the same layout
i = 0
while i < len(bxs) - 1:
b = bxs[i]
b_ = bxs[i + 1]
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
bxs[i]["text"] += b_["text"]
bxs.pop(i + 1)
continue
i += 1
continue
dis_thr = 1
dis = b["x1"] - b_["x0"]
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
if end_with(b, "") or start_with(b_, ""):
dis_thr = -8
else:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
bxs[i]["text"] += b_["text"]
bxs.pop(i + 1)
continue
i += 1
self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3):
import math
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
if not column_width or math.isnan(column_width):
column_width = self.mean_width[0]
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
b_ = bxs[i + 1]
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
bxs.pop(i)
continue
if not b["text"].strip():
bxs.pop(i)
continue
concatting_feats = [
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
]
# features for not concating
feats = [
b.get("layoutno", 0) != b_.get("layoutno", 0),
b["text"].strip()[-1] in "。?!?",
self.is_english and b["text"].strip()[-1] in ".!?",
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
]
# split features
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
logging.debug(
"{} {} {} {}".format(
b["text"],
b_["text"],
any(feats),
any(concatting_feats),
)
)
i += 1
continue
# merge up and down
b["bottom"] = b_["bottom"]
b["text"] += b_["text"]
b["x0"] = min(b["x0"], b_["x0"])
b["x1"] = max(b["x1"], b_["x1"])
bxs.pop(i + 1)
self.boxes = bxs
def _concat_downward(self, concat_between_pages=True):
self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0)
return
# count boxes in the same row as a feature
for i in range(len(self.boxes)):
mh = self.mean_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["in_row"] = 0
j = max(0, i - 12)
while j < min(i + 12, len(self.boxes)):
if j == i:
j += 1
continue
ydis = self._y_dis(self.boxes[i], self.boxes[j]) / mh
if abs(ydis) < 1:
self.boxes[i]["in_row"] += 1
elif ydis > 0:
break
j += 1
# concat between rows
boxes = deepcopy(self.boxes)
blocks = []
while boxes:
chunks = []
def dfs(up, dp):
chunks.append(up)
i = dp
while i < min(dp + 12, len(boxes)):
ydis = self._y_dis(up, boxes[i])
smpg = up["page_number"] == boxes[i]["page_number"]
mh = self.mean_height[up["page_number"] - 1]
mw = self.mean_width[up["page_number"] - 1]
if smpg and ydis > mh * 4:
break
if not smpg and ydis > mh * 16:
break
down = boxes[i]
if not concat_between_pages and down["page_number"] > up["page_number"]:
break
if up.get("R", "") != down.get("R", "") and up["text"][-1] != "":
i += 1
continue
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) or not down["text"].strip():
i += 1
continue
if not down["text"].strip() or not up["text"].strip():
i += 1
continue
if up["x1"] < down["x0"] - 10 * mw or up["x0"] > down["x1"] + 10 * mw:
i += 1
continue
if i - dp < 5 and up.get("layout_type") == "text":
if up.get("layoutno", "1") == down.get("layoutno", "2"):
dfs(down, i + 1)
boxes.pop(i)
return
i += 1
continue
fea = self._updown_concat_features(up, down)
if self.updown_cnt_mdl.predict(xgb.DMatrix([fea]))[0] <= 0.5:
i += 1
continue
dfs(down, i + 1)
boxes.pop(i)
return
dfs(boxes[0], 1)
boxes.pop(0)
if chunks:
blocks.append(chunks)
# concat within each block
boxes = []
for b in blocks:
if len(b) == 1:
boxes.append(b[0])
continue
t = b[0]
for c in b[1:]:
t["text"] = t["text"].strip()
c["text"] = c["text"].strip()
if not c["text"]:
continue
if t["text"] and re.match(r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
t["text"] += " "
t["text"] += c["text"]
t["x0"] = min(t["x0"], c["x0"])
t["x1"] = max(t["x1"], c["x1"])
t["page_number"] = min(t["page_number"], c["page_number"])
t["bottom"] = c["bottom"]
if not t["layout_type"] and c["layout_type"]:
t["layout_type"] = c["layout_type"]
boxes.append(t)
self.boxes = Recognizer.sort_Y_firstly(boxes, 0)
def _filter_forpages(self):
if not self.boxes:
return
findit = False
i = 0
while i < len(self.boxes):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
i += 1
continue
findit = True
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
while not prefix:
self.boxes.pop(i)
if i >= len(self.boxes):
break
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
self.boxes.pop(i)
if i >= len(self.boxes) or not prefix:
break
for j in range(i, min(i + 128, len(self.boxes))):
if not re.match(prefix, self.boxes[j]["text"]):
continue
for k in range(i, j):
self.boxes.pop(i)
break
if findit:
return
page_dirty = [0] * len(self.page_images)
for b in self.boxes:
if re.search(r"(··|··|··)", b["text"]):
page_dirty[b["page_number"] - 1] += 1
page_dirty = set([i + 1 for i, t in enumerate(page_dirty) if t > 3])
if not page_dirty:
return
i = 0
while i < len(self.boxes):
if self.boxes[i]["page_number"] in page_dirty:
self.boxes.pop(i)
continue
i += 1
def _merge_with_same_bullet(self):
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
b_ = self.boxes[i + 1]
if not b["text"].strip():
self.boxes.pop(i)
continue
if not b_["text"].strip():
self.boxes.pop(i + 1)
continue
if (
b["text"].strip()[0] != b_["text"].strip()[0]
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm")
or rag_tokenizer.is_chinese(b["text"].strip()[0])
or b["top"] > b_["bottom"]
):
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
def _extract_table_figure(self, need_image, ZM, return_html, need_position, separate_tables_figures=False):
tables = {}
figures = {}
# extract figure and table boxes
i = 0
lst_lout_no = ""
nomerge_lout_no = []
while i < len(self.boxes):
if "layoutno" not in self.boxes[i]:
i += 1
continue
lout_no = str(self.boxes[i]["page_number"]) + "-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title", "figure caption", "reference"]:
nomerge_lout_no.append(lst_lout_no)
if self.boxes[i]["layout_type"] == "table":
if re.match(r"(数据|资料|图表)*来源[: ]", self.boxes[i]["text"]):
self.boxes.pop(i)
continue
if lout_no not in tables:
tables[lout_no] = []
tables[lout_no].append(self.boxes[i])
self.boxes.pop(i)
lst_lout_no = lout_no
continue
if need_image and self.boxes[i]["layout_type"] == "figure":
if re.match(r"(数据|资料|图表)*来源[: ]", self.boxes[i]["text"]):
self.boxes.pop(i)
continue
if lout_no not in figures:
figures[lout_no] = []
figures[lout_no].append(self.boxes[i])
self.boxes.pop(i)
lst_lout_no = lout_no
continue
i += 1
# merge table on different pages
nomerge_lout_no = set(nomerge_lout_no)
tbls = sorted([(k, bxs) for k, bxs in tables.items()], key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
i = len(tbls) - 1
while i - 1 >= 0:
k0, bxs0 = tbls[i - 1]
k, bxs = tbls[i]
i -= 1
if k0 in nomerge_lout_no:
continue
if bxs[0]["page_number"] == bxs0[0]["page_number"]:
continue
if bxs[0]["page_number"] - bxs0[0]["page_number"] > 1:
continue
mh = self.mean_height[bxs[0]["page_number"] - 1]
if self._y_dis(bxs0[-1], bxs[0]) > mh * 23:
continue
tables[k0].extend(tables[k])
del tables[k]
def x_overlapped(a, b):
return not any([a["x1"] < b["x0"], a["x0"] > b["x1"]])
# find captions and pop out
i = 0
while i < len(self.boxes):
c = self.boxes[i]
# mh = self.mean_height[c["page_number"]-1]
if not TableStructureRecognizer.is_caption(c):
i += 1
continue
# find the nearest layouts
def nearest(tbls):
nonlocal c
mink = ""
minv = 1000000000
for k, bxs in tbls.items():
for b in bxs:
if b.get("layout_type", "").find("caption") >= 0:
continue
y_dis = self._y_dis(c, b)
x_dis = self._x_dis(c, b) if not x_overlapped(c, b) else 0
dis = y_dis * y_dis + x_dis * x_dis
if dis < minv:
mink = k
minv = dis
return mink, minv
tk, tv = nearest(tables)
fk, fv = nearest(figures)
# if min(tv, fv) > 2000:
# i += 1
# continue
if tv < fv and tk:
tables[tk].insert(0, c)
logging.debug("TABLE:" + self.boxes[i]["text"] + "; Cap: " + tk)
elif fk:
figures[fk].insert(0, c)
logging.debug("FIGURE:" + self.boxes[i]["text"] + "; Cap: " + tk)
self.boxes.pop(i)
def cropout(bxs, ltype, poss):
nonlocal ZM
pn = set([b["page_number"] - 1 for b in bxs])
if len(pn) < 2:
pn = list(pn)[0]
ht = self.page_cum_height[pn]
b = {"x0": np.min([b["x0"] for b in bxs]), "top": np.min([b["top"] for b in bxs]) - ht, "x1": np.max([b["x1"] for b in bxs]), "bottom": np.max([b["bottom"] for b in bxs]) - ht}
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
ii = Recognizer.find_overlapped(b, louts, naive=True)
if ii is not None:
b = louts[ii]
else:
logging.warning(f"Missing layout match: {pn + 1},%s" % (bxs[0].get("layoutno", "")))
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
if right < left:
right = left + 1
poss.append((pn + self.page_from, left, right, top, bott))
return self.page_images[pn].crop((left * ZM, top * ZM, right * ZM, bott * ZM))
pn = {}
for b in bxs:
p = b["page_number"] - 1
if p not in pn:
pn[p] = []
pn[p].append(b)
pn = sorted(pn.items(), key=lambda x: x[0])
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
pic = Image.new("RGB", (int(np.max([i.size[0] for i in imgs])), int(np.sum([m.size[1] for m in imgs]))), (245, 245, 245))
height = 0
for img in imgs:
pic.paste(img, (0, int(height)))
height += img.size[1]
return pic
res = []
positions = []
figure_results = []
figure_positions = []
# crop figure out and add caption
for k, bxs in figures.items():
txt = "\n".join([b["text"] for b in bxs])
if not txt:
continue
poss = []
if separate_tables_figures:
figure_results.append((cropout(bxs, "figure", poss), [txt]))
figure_positions.append(poss)
else:
res.append((cropout(bxs, "figure", poss), [txt]))
positions.append(poss)
for k, bxs in tables.items():
if not bxs:
continue
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
poss = []
res.append((cropout(bxs, "table", poss), self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
positions.append(poss)
if separate_tables_figures:
assert len(positions) + len(figure_positions) == len(res) + len(figure_results)
if need_position:
return list(zip(res, positions)), list(zip(figure_results, figure_positions))
else:
return res, figure_results
else:
assert len(positions) == len(res)
if need_position:
return list(zip(res, positions))
else:
return res
def proj_match(self, line):
if len(line) <= 2:
return
if re.match(r"[0-9 ().,%%+/-]+$", line):
return False
for p, j in [
(r"第[零一二三四五六七八九十百]+章", 1),
(r"第[零一二三四五六七八九十百]+[条节]", 2),
(r"[零一二三四五六七八九十百]+[、  ]", 3),
(r"[\(][零一二三四五六七八九十百]+[\)]", 4),
(r"[0-9]+(、|\.[  ]|\.[^0-9])", 5),
(r"[0-9]+\.[0-9]+(、|[.  ]|[^0-9])", 6),
(r"[0-9]+\.[0-9]+\.[0-9]+(、|[  ]|[^0-9])", 7),
(r"[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+(、|[  ]|[^0-9])", 8),
(r".{,48}[:?]$", 9),
(r"[0-9]+", 10),
(r"[\(][0-9]+[\)]", 11),
(r"[零一二三四五六七八九十百]+是", 12),
(r"[⚫•➢✓]", 12),
]:
if re.match(p, line):
return j
return
def _line_tag(self, bx, ZM):
pn = [bx["page_number"]]
top = bx["top"] - self.page_cum_height[pn[0] - 1]
bott = bx["bottom"] - self.page_cum_height[pn[0] - 1]
page_images_cnt = len(self.page_images)
if pn[-1] - 1 >= page_images_cnt:
return ""
while bott * ZM > self.page_images[pn[-1] - 1].size[1]:
bott -= self.page_images[pn[-1] - 1].size[1] / ZM
pn.append(pn[-1] + 1)
if pn[-1] - 1 >= page_images_cnt:
return ""
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##".format("-".join([str(p) for p in pn]), bx["x0"], bx["x1"], top, bott)
def __filterout_scraps(self, boxes, ZM):
def width(b):
return b["x1"] - b["x0"]
def height(b):
return b["bottom"] - b["top"]
def usefull(b):
if b.get("layout_type"):
return True
if width(b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
return True
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
return True
return False
res = []
while boxes:
lines = []
widths = []
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
mh = self.mean_height[boxes[0]["page_number"] - 1]
mj = self.proj_match(boxes[0]["text"]) or boxes[0].get("layout_type", "") == "title"
def dfs(line, st):
nonlocal mh, pw, lines, widths
lines.append(line)
widths.append(width(line))
mmj = self.proj_match(line["text"]) or line.get("layout_type", "") == "title"
for i in range(st + 1, min(st + 20, len(boxes))):
if (boxes[i]["page_number"] - line["page_number"]) > 0:
break
if not mmj and self._y_dis(line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
break
if not usefull(boxes[i]):
continue
if mmj or (self._x_dis(boxes[i], line) < pw / 10):
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
# concat following
dfs(boxes[i], i)
boxes.pop(i)
break
try:
if usefull(boxes[0]):
dfs(boxes[0], 0)
else:
logging.debug("WASTE: " + boxes[0]["text"])
except Exception:
pass
boxes.pop(0)
mw = np.mean(widths)
if mj or mw / pw >= 0.35 or mw > 200:
res.append("\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
else:
logging.debug("REMOVED: " + "<<".join([c["text"] for c in lines]))
return "\n\n".join(res)
@staticmethod
def total_page_number(fnm, binary=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
total_page = len(pdf.pages)
pdf.close()
return total_page
except Exception:
logging.exception("total_page_number")
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
self.lefted_chars = []
self.mean_height = []
self.mean_width = []
self.boxes = []
self.garbages = {}
self.page_cum_height = [0]
self.page_layout = []
self.page_from = page_from
start = timer()
try:
with sys.modules[LOCK_KEY_pdfplumber]:
with pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) as pdf:
self.pdf = pdf
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
except Exception as e:
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
self.total_page = len(self.pdf.pages)
except Exception:
logging.exception("RAGFlowPdfParser __images__")
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
self.outlines = []
try:
with pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) as pdf:
self.pdf = pdf
outlines = self.pdf.outline
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
self.outlines.append((a["/Title"], depth))
continue
dfs(a, depth + 1)
dfs(outlines, 0)
except Exception as e:
logging.warning(f"Outlines exception: {e}")
if not self.outlines:
logging.warning("Miss outlines")
logging.debug("Images converted.")
self.is_english = [
re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i])))))
for i in range(len(self.page_chars))
]
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
self.is_english = True
else:
self.is_english = False
async def __img_ocr(i, id, img, chars, limiter):
j = 0
while j + 1 < len(chars):
if (
chars[j]["text"]
and chars[j + 1]["text"]
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"])
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"], chars[j]["width"]) / 2
):
chars[j]["text"] += " "
j += 1
if limiter:
async with limiter:
await trio.to_thread.run_sync(lambda: self.__ocr(i + 1, img, chars, zoomin, id))
else:
self.__ocr(i + 1, img, chars, zoomin, id)
if callback and i % 6 == 5:
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
async def __img_ocr_launcher():
def __ocr_preprocess():
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(np.median(sorted([c["height"] for c in chars])) if chars else 0)
self.mean_width.append(np.median(sorted([c["width"] for c in chars])) if chars else 8)
self.page_cum_height.append(img.size[1] / zoomin)
return chars
if self.parallel_limiter:
async with trio.open_nursery() as nursery:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars, self.parallel_limiter[i % PARALLEL_DEVICES])
await trio.sleep(0.1)
else:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
await __img_ocr(i, 0, img, chars, None)
start = timer()
trio.run(__img_ocr_launcher)
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
bxes = [b for bxs in self.boxes for b in bxs]
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
logging.debug("Is it English:", self.is_english)
self.page_cum_height = np.cumsum(self.page_cum_height)
assert len(self.page_cum_height) == len(self.page_images) + 1
if len(self.boxes) == 0 and zoomin < 9:
self.__images__(fnm, zoomin * 3, page_from, page_to, callback)
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False):
self.__images__(fnm, zoomin)
self._layouts_rec(zoomin)
self._table_transformer_job(zoomin)
self._text_merge()
self._concat_downward()
self._filter_forpages()
tbls = self._extract_table_figure(need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
start = timer()
self.__images__(fnm, zoomin)
if callback:
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin)
if callback:
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
if callback:
callback(0.83, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
self._concat_downward()
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))
start = timer()
tbls, figs = self._extract_table_figure(True, zoomin, True, True, True)
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
return 0
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
dx = left1 - right2
else:
dx = 0
if bottom1 < top2:
dy = top2 - bottom1
elif bottom2 < top1:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
pn, left, right, top, bott = poss[0]
if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
min_i += 1
self.boxes.insert(min_i, {
"page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img,
"positions": [[pn+1, int(left), int(right), int(top), int(bott)]]
})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin)
b["positions"] = [[pos[0][-1]+1, *pos[1:]] for pos in SimplePdfParser.extract_positions(b["position_tag"])]
insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure")
if callback:
callback(1, "Structured ({:.2f}s)".format(timer() - start))
return deepcopy(self.boxes)
@staticmethod
def remove_tag(txt):
return re.sub(r"@@[\t0-9.-]+?##", "", txt)
@staticmethod
def extract_positions(txt):
poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
imgs = []
poss = self.extract_positions(text)
if not poss:
if need_position:
return None, None
return
max_width = max(np.max([right - left for (_, left, right, _, _) in poss]), 6)
GAP = 6
pos = poss[0]
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
pos = poss[-1]
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + GAP), min(self.page_images[pos[0][-1]].size[1] / ZM, pos[4] + 120)))
positions = []
for ii, (pns, left, right, top, bottom) in enumerate(poss):
right = left + max_width
bottom *= ZM
for pn in pns[1:]:
bottom += self.page_images[pn - 1].size[1]
imgs.append(self.page_images[pns[0]].crop((left * ZM, top * ZM, right * ZM, min(bottom, self.page_images[pns[0]].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pns[0] + self.page_from, left, right, top, min(bottom, self.page_images[pns[0]].size[1]) / ZM))
bottom -= self.page_images[pns[0]].size[1]
for pn in pns[1:]:
imgs.append(self.page_images[pn].crop((left * ZM, 0, right * ZM, min(bottom, self.page_images[pn].size[1]))))
if 0 < ii < len(poss) - 1:
positions.append((pn + self.page_from, left, right, 0, min(bottom, self.page_images[pn].size[1]) / ZM))
bottom -= self.page_images[pn].size[1]
if not imgs:
if need_position:
return None, None
return
height = 0
for img in imgs:
height += img.size[1] + GAP
height = int(height)
width = int(np.max([i.size[0] for i in imgs]))
pic = Image.new("RGB", (width, height), (245, 245, 245))
height = 0
for ii, img in enumerate(imgs):
if ii == 0 or ii + 1 == len(imgs):
img = img.convert("RGBA")
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
overlay.putalpha(128)
img = Image.alpha_composite(img, overlay).convert("RGB")
pic.paste(img, (0, int(height)))
height += img.size[1] + GAP
if need_position:
return pic, positions
return pic
def get_position(self, bx, ZM):
poss = []
pn = bx["page_number"]
top = bx["top"] - self.page_cum_height[pn - 1]
bott = bx["bottom"] - self.page_cum_height[pn - 1]
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
while bott * ZM > self.page_images[pn - 1].size[1]:
bott -= self.page_images[pn - 1].size[1] / ZM
top = 0
pn += 1
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
return poss
class PlainParser:
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
self.outlines = []
lines = []
try:
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
for page in self.pdf.pages[from_page:to_page]:
lines.extend([t for t in page.extract_text().split("\n")])
outlines = self.pdf.outline
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
self.outlines.append((a["/Title"], depth))
continue
dfs(a, depth + 1)
dfs(outlines, 0)
except Exception:
logging.exception("Outlines exception")
if not self.outlines:
logging.warning("Miss outlines")
return [(line, "") for line in lines], []
def crop(self, ck, need_position):
raise NotImplementedError
@staticmethod
def remove_tag(txt):
raise NotImplementedError
class VisionParser(SimplePdfParser):
def __init__(self, vision_model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vision_model = vision_model
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
self.total_page = len(self.pdf.pages)
except Exception:
self.page_images = None
self.total_page = 0
logging.exception("VisionParser __images__")
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
zoomin = kwargs.get("zoomin", 3)
self.__images__(fnm=filename, zoomin=zoomin, page_from=from_page, page_to=to_page, callback=callback)
total_pdf_pages = self.total_page
start_page = max(0, from_page)
end_page = min(to_page, total_pdf_pages)
all_docs = []
for idx, img_binary in enumerate(self.page_images or []):
pdf_page_num = idx # 0-based
if pdf_page_num < start_page or pdf_page_num >= end_page:
continue
text = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
callback=callback,
)
if kwargs.get("callback"):
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
if text:
width, height = self.page_images[idx].size
all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
return all_docs, []
# 向后兼容的别名
PdfParser = SimplePdfParser