将flask改成fastapi
This commit is contained in:
109
rag/svr/jina_server.py
Normal file
109
rag/svr/jina_server.py
Normal file
@@ -0,0 +1,109 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from jina import Deployment
|
||||
from docarray import BaseDoc
|
||||
from jina import Executor, requests
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
|
||||
class Prompt(BaseDoc):
|
||||
message: list[dict]
|
||||
gen_conf: dict
|
||||
|
||||
|
||||
class Generation(BaseDoc):
|
||||
text: str
|
||||
|
||||
|
||||
tokenizer = None
|
||||
model_name = ""
|
||||
|
||||
|
||||
class TokenStreamingExecutor(Executor):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", torch_dtype="auto"
|
||||
)
|
||||
|
||||
@requests(on="/chat")
|
||||
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
inputs = tokenizer([text], return_tensors="pt")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
generated_ids = self.model.generate(
|
||||
inputs.input_ids, generation_config=generation_config
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids) :]
|
||||
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
yield Generation(text=response)
|
||||
|
||||
@requests(on="/stream")
|
||||
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
input = tokenizer([text], return_tensors="pt")
|
||||
input_len = input["input_ids"].shape[1]
|
||||
max_new_tokens = 512
|
||||
if "max_new_tokens" in doc.gen_conf:
|
||||
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
for _ in range(max_new_tokens):
|
||||
output = self.model.generate(
|
||||
**input, max_new_tokens=1, generation_config=generation_config
|
||||
)
|
||||
if output[0][-1] == tokenizer.eos_token_id:
|
||||
break
|
||||
yield Generation(
|
||||
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
||||
)
|
||||
input = {
|
||||
"input_ids": output,
|
||||
"attention_mask": torch.ones(1, len(output[0])),
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", type=str, help="Model name or path")
|
||||
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
||||
args = parser.parse_args()
|
||||
model_name = args.model_name
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
||||
with Deployment(
|
||||
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
||||
) as dep:
|
||||
dep.block()
|
||||
Reference in New Issue
Block a user