将flask改成fastapi
This commit is contained in:
60
rag/svr/cache_file_svr.py
Normal file
60
rag/svr/cache_file_svr.py
Normal file
@@ -0,0 +1,60 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import logging
|
||||
import time
|
||||
import traceback
|
||||
|
||||
from api.db.db_models import close_connection
|
||||
from api.db.services.task_service import TaskService
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from rag.utils.redis_conn import REDIS_CONN
|
||||
|
||||
|
||||
def collect():
|
||||
doc_locations = TaskService.get_ongoing_doc_name()
|
||||
logging.debug(doc_locations)
|
||||
if len(doc_locations) == 0:
|
||||
time.sleep(1)
|
||||
return
|
||||
return doc_locations
|
||||
|
||||
|
||||
def main():
|
||||
locations = collect()
|
||||
if not locations:
|
||||
return
|
||||
logging.info(f"TASKS: {len(locations)}")
|
||||
for kb_id, loc in locations:
|
||||
try:
|
||||
if REDIS_CONN.is_alive():
|
||||
try:
|
||||
key = "{}/{}".format(kb_id, loc)
|
||||
if REDIS_CONN.exist(key):
|
||||
continue
|
||||
file_bin = STORAGE_IMPL.get(kb_id, loc)
|
||||
REDIS_CONN.transaction(key, file_bin, 12 * 60)
|
||||
logging.info("CACHE: {}".format(loc))
|
||||
except Exception as e:
|
||||
traceback.print_stack(e)
|
||||
except Exception as e:
|
||||
traceback.print_stack(e)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
while True:
|
||||
main()
|
||||
close_connection()
|
||||
time.sleep(1)
|
||||
81
rag/svr/discord_svr.py
Normal file
81
rag/svr/discord_svr.py
Normal file
@@ -0,0 +1,81 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import logging
|
||||
import discord
|
||||
import requests
|
||||
import base64
|
||||
import asyncio
|
||||
|
||||
URL = '{YOUR_IP_ADDRESS:PORT}/v1/api/completion_aibotk' # Default: https://demo.ragflow.io/v1/api/completion_aibotk
|
||||
|
||||
JSON_DATA = {
|
||||
"conversation_id": "xxxxxxxxxxxxxxxxxxxxxxxxxxx", # Get conversation id from /api/new_conversation
|
||||
"Authorization": "ragflow-xxxxxxxxxxxxxxxxxxxxxxxxxxxxx", # RAGFlow Assistant Chat Bot API Key
|
||||
"word": "" # User question, don't need to initialize
|
||||
}
|
||||
|
||||
DISCORD_BOT_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxx" #Get DISCORD_BOT_KEY from Discord Application
|
||||
|
||||
|
||||
intents = discord.Intents.default()
|
||||
intents.message_content = True
|
||||
client = discord.Client(intents=intents)
|
||||
|
||||
|
||||
@client.event
|
||||
async def on_ready():
|
||||
logging.info(f'We have logged in as {client.user}')
|
||||
|
||||
|
||||
@client.event
|
||||
async def on_message(message):
|
||||
if message.author == client.user:
|
||||
return
|
||||
|
||||
if client.user.mentioned_in(message):
|
||||
|
||||
if len(message.content.split('> ')) == 1:
|
||||
await message.channel.send("Hi~ How can I help you? ")
|
||||
else:
|
||||
JSON_DATA['word']=message.content.split('> ')[1]
|
||||
response = requests.post(URL, json=JSON_DATA)
|
||||
response_data = response.json().get('data', [])
|
||||
image_bool = False
|
||||
|
||||
for i in response_data:
|
||||
if i['type'] == 1:
|
||||
res = i['content']
|
||||
if i['type'] == 3:
|
||||
image_bool = True
|
||||
image_data = base64.b64decode(i['url'])
|
||||
with open('tmp_image.png','wb') as file:
|
||||
file.write(image_data)
|
||||
image= discord.File('tmp_image.png')
|
||||
|
||||
await message.channel.send(f"{message.author.mention}{res}")
|
||||
|
||||
if image_bool:
|
||||
await message.channel.send(file=image)
|
||||
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
|
||||
try:
|
||||
loop.run_until_complete(client.start(DISCORD_BOT_KEY))
|
||||
except KeyboardInterrupt:
|
||||
loop.run_until_complete(client.close())
|
||||
finally:
|
||||
loop.close()
|
||||
109
rag/svr/jina_server.py
Normal file
109
rag/svr/jina_server.py
Normal file
@@ -0,0 +1,109 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from jina import Deployment
|
||||
from docarray import BaseDoc
|
||||
from jina import Executor, requests
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
|
||||
class Prompt(BaseDoc):
|
||||
message: list[dict]
|
||||
gen_conf: dict
|
||||
|
||||
|
||||
class Generation(BaseDoc):
|
||||
text: str
|
||||
|
||||
|
||||
tokenizer = None
|
||||
model_name = ""
|
||||
|
||||
|
||||
class TokenStreamingExecutor(Executor):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", torch_dtype="auto"
|
||||
)
|
||||
|
||||
@requests(on="/chat")
|
||||
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
inputs = tokenizer([text], return_tensors="pt")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
generated_ids = self.model.generate(
|
||||
inputs.input_ids, generation_config=generation_config
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids) :]
|
||||
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
yield Generation(text=response)
|
||||
|
||||
@requests(on="/stream")
|
||||
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
input = tokenizer([text], return_tensors="pt")
|
||||
input_len = input["input_ids"].shape[1]
|
||||
max_new_tokens = 512
|
||||
if "max_new_tokens" in doc.gen_conf:
|
||||
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
for _ in range(max_new_tokens):
|
||||
output = self.model.generate(
|
||||
**input, max_new_tokens=1, generation_config=generation_config
|
||||
)
|
||||
if output[0][-1] == tokenizer.eos_token_id:
|
||||
break
|
||||
yield Generation(
|
||||
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
||||
)
|
||||
input = {
|
||||
"input_ids": output,
|
||||
"attention_mask": torch.ones(1, len(output[0])),
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", type=str, help="Model name or path")
|
||||
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
||||
args = parser.parse_args()
|
||||
model_name = args.model_name
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
||||
with Deployment(
|
||||
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
||||
) as dep:
|
||||
dep.block()
|
||||
1009
rag/svr/task_executor.py
Normal file
1009
rag/svr/task_executor.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user