将flask改成fastapi
This commit is contained in:
244
rag/nlp/term_weight.py
Normal file
244
rag/nlp/term_weight.py
Normal file
@@ -0,0 +1,244 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
import math
|
||||
import json
|
||||
import re
|
||||
import os
|
||||
import numpy as np
|
||||
from rag.nlp import rag_tokenizer
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
class Dealer:
|
||||
def __init__(self):
|
||||
self.stop_words = set(["请问",
|
||||
"您",
|
||||
"你",
|
||||
"我",
|
||||
"他",
|
||||
"是",
|
||||
"的",
|
||||
"就",
|
||||
"有",
|
||||
"于",
|
||||
"及",
|
||||
"即",
|
||||
"在",
|
||||
"为",
|
||||
"最",
|
||||
"有",
|
||||
"从",
|
||||
"以",
|
||||
"了",
|
||||
"将",
|
||||
"与",
|
||||
"吗",
|
||||
"吧",
|
||||
"中",
|
||||
"#",
|
||||
"什么",
|
||||
"怎么",
|
||||
"哪个",
|
||||
"哪些",
|
||||
"啥",
|
||||
"相关"])
|
||||
|
||||
def load_dict(fnm):
|
||||
res = {}
|
||||
f = open(fnm, "r")
|
||||
while True:
|
||||
line = f.readline()
|
||||
if not line:
|
||||
break
|
||||
arr = line.replace("\n", "").split("\t")
|
||||
if len(arr) < 2:
|
||||
res[arr[0]] = 0
|
||||
else:
|
||||
res[arr[0]] = int(arr[1])
|
||||
|
||||
c = 0
|
||||
for _, v in res.items():
|
||||
c += v
|
||||
if c == 0:
|
||||
return set(res.keys())
|
||||
return res
|
||||
|
||||
fnm = os.path.join(get_project_base_directory(), "rag/res")
|
||||
self.ne, self.df = {}, {}
|
||||
try:
|
||||
self.ne = json.load(open(os.path.join(fnm, "ner.json"), "r"))
|
||||
except Exception:
|
||||
logging.warning("Load ner.json FAIL!")
|
||||
try:
|
||||
self.df = load_dict(os.path.join(fnm, "term.freq"))
|
||||
except Exception:
|
||||
logging.warning("Load term.freq FAIL!")
|
||||
|
||||
def pretoken(self, txt, num=False, stpwd=True):
|
||||
patt = [
|
||||
r"[~—\t @#%!<>,\.\?\":;'\{\}\[\]_=\(\)\|,。?》•●○↓《;‘’:“”【¥ 】…¥!、·()×`&\\/「」\\]"
|
||||
]
|
||||
rewt = [
|
||||
]
|
||||
for p, r in rewt:
|
||||
txt = re.sub(p, r, txt)
|
||||
|
||||
res = []
|
||||
for t in rag_tokenizer.tokenize(txt).split():
|
||||
tk = t
|
||||
if (stpwd and tk in self.stop_words) or (
|
||||
re.match(r"[0-9]$", tk) and not num):
|
||||
continue
|
||||
for p in patt:
|
||||
if re.match(p, t):
|
||||
tk = "#"
|
||||
break
|
||||
#tk = re.sub(r"([\+\\-])", r"\\\1", tk)
|
||||
if tk != "#" and tk:
|
||||
res.append(tk)
|
||||
return res
|
||||
|
||||
def tokenMerge(self, tks):
|
||||
def oneTerm(t): return len(t) == 1 or re.match(r"[0-9a-z]{1,2}$", t)
|
||||
|
||||
res, i = [], 0
|
||||
while i < len(tks):
|
||||
j = i
|
||||
if i == 0 and oneTerm(tks[i]) and len(
|
||||
tks) > 1 and (len(tks[i + 1]) > 1 and not re.match(r"[0-9a-zA-Z]", tks[i + 1])): # 多 工位
|
||||
res.append(" ".join(tks[0:2]))
|
||||
i = 2
|
||||
continue
|
||||
|
||||
while j < len(
|
||||
tks) and tks[j] and tks[j] not in self.stop_words and oneTerm(tks[j]):
|
||||
j += 1
|
||||
if j - i > 1:
|
||||
if j - i < 5:
|
||||
res.append(" ".join(tks[i:j]))
|
||||
i = j
|
||||
else:
|
||||
res.append(" ".join(tks[i:i + 2]))
|
||||
i = i + 2
|
||||
else:
|
||||
if len(tks[i]) > 0:
|
||||
res.append(tks[i])
|
||||
i += 1
|
||||
return [t for t in res if t]
|
||||
|
||||
def ner(self, t):
|
||||
if not self.ne:
|
||||
return ""
|
||||
res = self.ne.get(t, "")
|
||||
if res:
|
||||
return res
|
||||
|
||||
def split(self, txt):
|
||||
tks = []
|
||||
for t in re.sub(r"[ \t]+", " ", txt).split():
|
||||
if tks and re.match(r".*[a-zA-Z]$", tks[-1]) and \
|
||||
re.match(r".*[a-zA-Z]$", t) and tks and \
|
||||
self.ne.get(t, "") != "func" and self.ne.get(tks[-1], "") != "func":
|
||||
tks[-1] = tks[-1] + " " + t
|
||||
else:
|
||||
tks.append(t)
|
||||
return tks
|
||||
|
||||
def weights(self, tks, preprocess=True):
|
||||
num_pattern = re.compile(r"[0-9,.]{2,}$")
|
||||
short_letter_pattern = re.compile(r"[a-z]{1,2}$")
|
||||
num_space_pattern = re.compile(r"[0-9. -]{2,}$")
|
||||
letter_pattern = re.compile(r"[a-z. -]+$")
|
||||
|
||||
def ner(t):
|
||||
if num_pattern.match(t):
|
||||
return 2
|
||||
if short_letter_pattern.match(t):
|
||||
return 0.01
|
||||
if not self.ne or t not in self.ne:
|
||||
return 1
|
||||
m = {"toxic": 2, "func": 1, "corp": 3, "loca": 3, "sch": 3, "stock": 3,
|
||||
"firstnm": 1}
|
||||
return m[self.ne[t]]
|
||||
|
||||
def postag(t):
|
||||
t = rag_tokenizer.tag(t)
|
||||
if t in set(["r", "c", "d"]):
|
||||
return 0.3
|
||||
if t in set(["ns", "nt"]):
|
||||
return 3
|
||||
if t in set(["n"]):
|
||||
return 2
|
||||
if re.match(r"[0-9-]+", t):
|
||||
return 2
|
||||
return 1
|
||||
|
||||
def freq(t):
|
||||
if num_space_pattern.match(t):
|
||||
return 3
|
||||
s = rag_tokenizer.freq(t)
|
||||
if not s and letter_pattern.match(t):
|
||||
return 300
|
||||
if not s:
|
||||
s = 0
|
||||
|
||||
if not s and len(t) >= 4:
|
||||
s = [tt for tt in rag_tokenizer.fine_grained_tokenize(t).split() if len(tt) > 1]
|
||||
if len(s) > 1:
|
||||
s = np.min([freq(tt) for tt in s]) / 6.
|
||||
else:
|
||||
s = 0
|
||||
|
||||
return max(s, 10)
|
||||
|
||||
def df(t):
|
||||
if num_space_pattern.match(t):
|
||||
return 5
|
||||
if t in self.df:
|
||||
return self.df[t] + 3
|
||||
elif letter_pattern.match(t):
|
||||
return 300
|
||||
elif len(t) >= 4:
|
||||
s = [tt for tt in rag_tokenizer.fine_grained_tokenize(t).split() if len(tt) > 1]
|
||||
if len(s) > 1:
|
||||
return max(3, np.min([df(tt) for tt in s]) / 6.)
|
||||
|
||||
return 3
|
||||
|
||||
def idf(s, N): return math.log10(10 + ((N - s + 0.5) / (s + 0.5)))
|
||||
|
||||
tw = []
|
||||
if not preprocess:
|
||||
idf1 = np.array([idf(freq(t), 10000000) for t in tks])
|
||||
idf2 = np.array([idf(df(t), 1000000000) for t in tks])
|
||||
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
||||
np.array([ner(t) * postag(t) for t in tks])
|
||||
wts = [s for s in wts]
|
||||
tw = list(zip(tks, wts))
|
||||
else:
|
||||
for tk in tks:
|
||||
tt = self.tokenMerge(self.pretoken(tk, True))
|
||||
idf1 = np.array([idf(freq(t), 10000000) for t in tt])
|
||||
idf2 = np.array([idf(df(t), 1000000000) for t in tt])
|
||||
wts = (0.3 * idf1 + 0.7 * idf2) * \
|
||||
np.array([ner(t) * postag(t) for t in tt])
|
||||
wts = [s for s in wts]
|
||||
tw.extend(zip(tt, wts))
|
||||
|
||||
S = np.sum([s for _, s in tw])
|
||||
return [(t, s / S) for t, s in tw]
|
||||
Reference in New Issue
Block a user