将flask改成fastapi
This commit is contained in:
836
rag/llm/cv_model.py
Normal file
836
rag/llm/cv_model.py
Normal file
@@ -0,0 +1,836 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
from abc import ABC
|
||||
from copy import deepcopy
|
||||
from io import BytesIO
|
||||
from urllib.parse import urljoin
|
||||
import requests
|
||||
from openai import OpenAI
|
||||
from openai.lib.azure import AzureOpenAI
|
||||
from zhipuai import ZhipuAI
|
||||
from rag.nlp import is_english
|
||||
from rag.prompts.generator import vision_llm_describe_prompt
|
||||
from rag.utils import num_tokens_from_string, total_token_count_from_response
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, **kwargs):
|
||||
# Configure retry parameters
|
||||
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
|
||||
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
|
||||
self.max_rounds = kwargs.get("max_rounds", 5)
|
||||
self.is_tools = False
|
||||
self.tools = []
|
||||
self.toolcall_sessions = {}
|
||||
|
||||
def describe(self, image):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "system", "content": system})
|
||||
for h in history:
|
||||
if images and h["role"] == "user":
|
||||
h["content"] = self._image_prompt(h["content"], images)
|
||||
images = []
|
||||
hist.append(h)
|
||||
return hist
|
||||
|
||||
def _image_prompt(self, text, images):
|
||||
if not images:
|
||||
return text
|
||||
|
||||
if isinstance(images, str) or "bytes" in type(images).__name__:
|
||||
images = [images]
|
||||
|
||||
pmpt = [{"type": "text", "text": text}]
|
||||
for img in images:
|
||||
pmpt.append({
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}"
|
||||
}
|
||||
})
|
||||
return pmpt
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images)
|
||||
)
|
||||
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
ans = ""
|
||||
tk_count = 0
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
stream=True
|
||||
)
|
||||
for resp in response:
|
||||
if not resp.choices[0].delta.content:
|
||||
continue
|
||||
delta = resp.choices[0].delta.content
|
||||
ans = delta
|
||||
if resp.choices[0].finish_reason == "length":
|
||||
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
if resp.choices[0].finish_reason == "stop":
|
||||
tk_count += resp.usage.total_tokens
|
||||
yield ans
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield tk_count
|
||||
|
||||
@staticmethod
|
||||
def image2base64(image):
|
||||
# Return a data URL with the correct MIME to avoid provider mismatches
|
||||
if isinstance(image, bytes):
|
||||
# Best-effort magic number sniffing
|
||||
mime = "image/png"
|
||||
if len(image) >= 2 and image[0] == 0xFF and image[1] == 0xD8:
|
||||
mime = "image/jpeg"
|
||||
b64 = base64.b64encode(image).decode("utf-8")
|
||||
return f"data:{mime};base64,{b64}"
|
||||
if isinstance(image, BytesIO):
|
||||
data = image.getvalue()
|
||||
mime = "image/png"
|
||||
if len(data) >= 2 and data[0] == 0xFF and data[1] == 0xD8:
|
||||
mime = "image/jpeg"
|
||||
b64 = base64.b64encode(data).decode("utf-8")
|
||||
return f"data:{mime};base64,{b64}"
|
||||
with BytesIO() as buffered:
|
||||
fmt = "jpeg"
|
||||
try:
|
||||
image.save(buffered, format="JPEG")
|
||||
except Exception:
|
||||
# reset buffer before saving PNG
|
||||
buffered.seek(0)
|
||||
buffered.truncate()
|
||||
image.save(buffered, format="PNG")
|
||||
fmt = "png"
|
||||
data = buffered.getvalue()
|
||||
b64 = base64.b64encode(data).decode("utf-8")
|
||||
mime = f"image/{fmt}"
|
||||
return f"data:{mime};base64,{b64}"
|
||||
|
||||
def prompt(self, b64):
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": self._image_prompt(
|
||||
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
||||
if self.lang.lower() == "chinese"
|
||||
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
||||
b64
|
||||
)
|
||||
}
|
||||
]
|
||||
|
||||
def vision_llm_prompt(self, b64, prompt=None):
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class GptV4(Base):
|
||||
_FACTORY_NAME = "OpenAI"
|
||||
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.openai.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def describe(self, image):
|
||||
b64 = self.image2base64(image)
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.prompt(b64),
|
||||
)
|
||||
return res.choices[0].message.content.strip(), total_token_count_from_response(res)
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
b64 = self.image2base64(image)
|
||||
res = self.client.chat.completions.create(
|
||||
model=self.model_name,
|
||||
messages=self.vision_llm_prompt(b64, prompt),
|
||||
)
|
||||
return res.choices[0].message.content.strip(),total_token_count_from_response(res)
|
||||
|
||||
|
||||
class AzureGptV4(GptV4):
|
||||
_FACTORY_NAME = "Azure-OpenAI"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
||||
api_key = json.loads(key).get("api_key", "")
|
||||
api_version = json.loads(key).get("api_version", "2024-02-01")
|
||||
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class xAICV(GptV4):
|
||||
_FACTORY_NAME = "xAI"
|
||||
|
||||
def __init__(self, key, model_name="grok-3", lang="Chinese", base_url=None, **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.x.ai/v1"
|
||||
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
||||
|
||||
|
||||
class QWenCV(GptV4):
|
||||
_FACTORY_NAME = "Tongyi-Qianwen"
|
||||
|
||||
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", base_url=None, **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
||||
|
||||
|
||||
class HunyuanCV(GptV4):
|
||||
_FACTORY_NAME = "Tencent Hunyuan"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.hunyuan.cloud.tencent.com/v1"
|
||||
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
||||
|
||||
|
||||
class Zhipu4V(GptV4):
|
||||
_FACTORY_NAME = "ZHIPU-AI"
|
||||
|
||||
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
||||
self.client = ZhipuAI(api_key=key)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class StepFunCV(GptV4):
|
||||
_FACTORY_NAME = "StepFun"
|
||||
|
||||
def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.stepfun.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class LmStudioCV(GptV4):
|
||||
_FACTORY_NAME = "LM-Studio"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class OpenAI_APICV(GptV4):
|
||||
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("url cannot be None")
|
||||
base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class TogetherAICV(GptV4):
|
||||
_FACTORY_NAME = "TogetherAI"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://api.together.xyz/v1"
|
||||
super().__init__(key, model_name, lang, base_url, **kwargs)
|
||||
|
||||
|
||||
class YiCV(GptV4):
|
||||
_FACTORY_NAME = "01.AI"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
lang="Chinese",
|
||||
base_url="https://api.lingyiwanwu.com/v1", **kwargs
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://api.lingyiwanwu.com/v1"
|
||||
super().__init__(key, model_name, lang, base_url, **kwargs)
|
||||
|
||||
|
||||
class SILICONFLOWCV(GptV4):
|
||||
_FACTORY_NAME = "SILICONFLOW"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
lang="Chinese",
|
||||
base_url="https://api.siliconflow.cn/v1", **kwargs
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://api.siliconflow.cn/v1"
|
||||
super().__init__(key, model_name, lang, base_url, **kwargs)
|
||||
|
||||
|
||||
class OpenRouterCV(GptV4):
|
||||
_FACTORY_NAME = "OpenRouter"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
lang="Chinese",
|
||||
base_url="https://openrouter.ai/api/v1", **kwargs
|
||||
):
|
||||
if not base_url:
|
||||
base_url = "https://openrouter.ai/api/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class LocalAICV(GptV4):
|
||||
_FACTORY_NAME = "LocalAI"
|
||||
|
||||
def __init__(self, key, model_name, base_url, lang="Chinese", **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("Local cv model url cannot be None")
|
||||
base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key="empty", base_url=base_url)
|
||||
self.model_name = model_name.split("___")[0]
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class XinferenceCV(GptV4):
|
||||
_FACTORY_NAME = "Xinference"
|
||||
|
||||
def __init__(self, key, model_name="", lang="Chinese", base_url="", **kwargs):
|
||||
base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class GPUStackCV(GptV4):
|
||||
_FACTORY_NAME = "GPUStack"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
||||
if not base_url:
|
||||
raise ValueError("Local llm url cannot be None")
|
||||
base_url = urljoin(base_url, "v1")
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
class LocalCV(Base):
|
||||
_FACTORY_NAME = "Moonshot"
|
||||
|
||||
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
||||
pass
|
||||
|
||||
def describe(self, image):
|
||||
return "", 0
|
||||
|
||||
|
||||
class OllamaCV(Base):
|
||||
_FACTORY_NAME = "Ollama"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
||||
from ollama import Client
|
||||
self.client = Client(host=kwargs["base_url"])
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
|
||||
def _clean_img(self, img):
|
||||
if not isinstance(img, str):
|
||||
return img
|
||||
|
||||
#remove the header like "data/*;base64,"
|
||||
if img.startswith("data:") and ";base64," in img:
|
||||
img = img.split(";base64,")[1]
|
||||
return img
|
||||
|
||||
def _clean_conf(self, gen_conf):
|
||||
options = {}
|
||||
if "temperature" in gen_conf:
|
||||
options["temperature"] = gen_conf["temperature"]
|
||||
if "top_p" in gen_conf:
|
||||
options["top_k"] = gen_conf["top_p"]
|
||||
if "presence_penalty" in gen_conf:
|
||||
options["presence_penalty"] = gen_conf["presence_penalty"]
|
||||
if "frequency_penalty" in gen_conf:
|
||||
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
||||
return options
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
hist = deepcopy(history)
|
||||
if system and hist[0]["role"] == "user":
|
||||
hist.insert(0, {"role": "system", "content": system})
|
||||
if not images:
|
||||
return hist
|
||||
temp_images = []
|
||||
for img in images:
|
||||
temp_images.append(self._clean_img(img))
|
||||
for his in hist:
|
||||
if his["role"] == "user":
|
||||
his["images"] = temp_images
|
||||
break
|
||||
return hist
|
||||
|
||||
def describe(self, image):
|
||||
prompt = self.prompt("")
|
||||
try:
|
||||
response = self.client.generate(
|
||||
model=self.model_name,
|
||||
prompt=prompt[0]["content"][0]["text"],
|
||||
images=[image],
|
||||
)
|
||||
ans = response["response"].strip()
|
||||
return ans, 128
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
|
||||
try:
|
||||
response = self.client.generate(
|
||||
model=self.model_name,
|
||||
prompt=vision_prompt[0]["content"][0]["text"],
|
||||
images=[image],
|
||||
)
|
||||
ans = response["response"].strip()
|
||||
return ans, 128
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
try:
|
||||
response = self.client.chat(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
options=self._clean_conf(gen_conf),
|
||||
keep_alive=self.keep_alive
|
||||
)
|
||||
|
||||
ans = response["message"]["content"].strip()
|
||||
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
ans = ""
|
||||
try:
|
||||
response = self.client.chat(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
stream=True,
|
||||
options=self._clean_conf(gen_conf),
|
||||
keep_alive=self.keep_alive
|
||||
)
|
||||
for resp in response:
|
||||
if resp["done"]:
|
||||
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
|
||||
ans = resp["message"]["content"]
|
||||
yield ans
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
yield 0
|
||||
|
||||
|
||||
class GeminiCV(Base):
|
||||
_FACTORY_NAME = "Gemini"
|
||||
|
||||
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
|
||||
from google.generativeai import GenerativeModel, client
|
||||
|
||||
client.configure(api_key=key)
|
||||
_client = client.get_default_generative_client()
|
||||
self.model_name = model_name
|
||||
self.model = GenerativeModel(model_name=self.model_name)
|
||||
self.model._client = _client
|
||||
self.lang = lang
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def _form_history(self, system, history, images=[]):
|
||||
hist = []
|
||||
if system:
|
||||
hist.append({"role": "user", "parts": [system, history[0]["content"]]})
|
||||
for img in images:
|
||||
hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img)
|
||||
for h in history[1:]:
|
||||
hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]})
|
||||
return hist
|
||||
|
||||
def describe(self, image):
|
||||
from PIL.Image import open
|
||||
|
||||
prompt = (
|
||||
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
||||
if self.lang.lower() == "chinese"
|
||||
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
||||
)
|
||||
b64 = self.image2base64(image)
|
||||
with BytesIO(base64.b64decode(b64)) as bio:
|
||||
with open(bio) as img:
|
||||
input = [prompt, img]
|
||||
res = self.model.generate_content(input)
|
||||
return res.text, total_token_count_from_response(res)
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
from PIL.Image import open
|
||||
|
||||
b64 = self.image2base64(image)
|
||||
vision_prompt = prompt if prompt else vision_llm_describe_prompt()
|
||||
with BytesIO(base64.b64decode(b64)) as bio:
|
||||
with open(bio) as img:
|
||||
input = [vision_prompt, img]
|
||||
res = self.model.generate_content(input)
|
||||
return res.text, total_token_count_from_response(res)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
self._form_history(system, history, images),
|
||||
generation_config=generation_config)
|
||||
ans = response.text
|
||||
return ans, total_token_count_from_response(ans)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
ans = ""
|
||||
response = None
|
||||
try:
|
||||
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
||||
response = self.model.generate_content(
|
||||
self._form_history(system, history, images),
|
||||
generation_config=generation_config,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
for resp in response:
|
||||
if not resp.text:
|
||||
continue
|
||||
ans = resp.text
|
||||
yield ans
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_token_count_from_response(response)
|
||||
|
||||
|
||||
class NvidiaCV(Base):
|
||||
_FACTORY_NAME = "NVIDIA"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
model_name,
|
||||
lang="Chinese",
|
||||
base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs
|
||||
):
|
||||
if not base_url:
|
||||
base_url = ("https://ai.api.nvidia.com/v1/vlm",)
|
||||
self.lang = lang
|
||||
factory, llm_name = model_name.split("/")
|
||||
if factory != "liuhaotian":
|
||||
self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
|
||||
else:
|
||||
self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
|
||||
self.key = key
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def _image_prompt(self, text, images):
|
||||
if not images:
|
||||
return text
|
||||
htmls = ""
|
||||
for img in images:
|
||||
htmls += ' <img src="{}"/>'.format(f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img)
|
||||
return text + htmls
|
||||
|
||||
def describe(self, image):
|
||||
b64 = self.image2base64(image)
|
||||
response = requests.post(
|
||||
url=self.base_url,
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": f"Bearer {self.key}",
|
||||
},
|
||||
json={"messages": self.prompt(b64)},
|
||||
)
|
||||
response = response.json()
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
)
|
||||
|
||||
def _request(self, msg, gen_conf={}):
|
||||
response = requests.post(
|
||||
url=self.base_url,
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
"Authorization": f"Bearer {self.key}",
|
||||
},
|
||||
json={
|
||||
"messages": msg, **gen_conf
|
||||
},
|
||||
)
|
||||
return response.json()
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
b64 = self.image2base64(image)
|
||||
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
||||
response = self._request(vision_prompt)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
yield "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class AnthropicCV(Base):
|
||||
_FACTORY_NAME = "Anthropic"
|
||||
|
||||
def __init__(self, key, model_name, base_url=None, **kwargs):
|
||||
import anthropic
|
||||
|
||||
self.client = anthropic.Anthropic(api_key=key)
|
||||
self.model_name = model_name
|
||||
self.system = ""
|
||||
self.max_tokens = 8192
|
||||
if "haiku" in self.model_name or "opus" in self.model_name:
|
||||
self.max_tokens = 4096
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def _image_prompt(self, text, images):
|
||||
if not images:
|
||||
return text
|
||||
pmpt = [{"type": "text", "text": text}]
|
||||
for img in images:
|
||||
pmpt.append({
|
||||
"type": "image",
|
||||
"source": {
|
||||
"type": "base64",
|
||||
"media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"),
|
||||
"data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img)
|
||||
},
|
||||
}
|
||||
)
|
||||
return pmpt
|
||||
|
||||
def describe(self, image):
|
||||
b64 = self.image2base64(image)
|
||||
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=self.prompt(b64))
|
||||
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
b64 = self.image2base64(image)
|
||||
prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
|
||||
|
||||
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
|
||||
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
|
||||
|
||||
def _clean_conf(self, gen_conf):
|
||||
if "presence_penalty" in gen_conf:
|
||||
del gen_conf["presence_penalty"]
|
||||
if "frequency_penalty" in gen_conf:
|
||||
del gen_conf["frequency_penalty"]
|
||||
if "max_token" in gen_conf:
|
||||
gen_conf["max_tokens"] = self.max_tokens
|
||||
return gen_conf
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
ans = ""
|
||||
try:
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
system=system,
|
||||
stream=False,
|
||||
**gen_conf,
|
||||
).to_dict()
|
||||
ans = response["content"][0]["text"]
|
||||
if response["stop_reason"] == "max_tokens":
|
||||
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
return (
|
||||
ans,
|
||||
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
||||
)
|
||||
except Exception as e:
|
||||
return ans + "\n**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
gen_conf = self._clean_conf(gen_conf)
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
messages=self._form_history(system, history, images),
|
||||
system=system,
|
||||
stream=True,
|
||||
**gen_conf,
|
||||
)
|
||||
think = False
|
||||
for res in response:
|
||||
if res.type == "content_block_delta":
|
||||
if res.delta.type == "thinking_delta" and res.delta.thinking:
|
||||
if not think:
|
||||
yield "<think>"
|
||||
think = True
|
||||
yield res.delta.thinking
|
||||
total_tokens += num_tokens_from_string(res.delta.thinking)
|
||||
elif think:
|
||||
yield "</think>"
|
||||
else:
|
||||
yield res.delta.text
|
||||
total_tokens += num_tokens_from_string(res.delta.text)
|
||||
except Exception as e:
|
||||
yield "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class GoogleCV(AnthropicCV, GeminiCV):
|
||||
_FACTORY_NAME = "Google Cloud"
|
||||
|
||||
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
|
||||
import base64
|
||||
|
||||
from google.oauth2 import service_account
|
||||
|
||||
key = json.loads(key)
|
||||
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
|
||||
project_id = key.get("google_project_id", "")
|
||||
region = key.get("google_region", "")
|
||||
|
||||
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
|
||||
if "claude" in self.model_name:
|
||||
from anthropic import AnthropicVertex
|
||||
from google.auth.transport.requests import Request
|
||||
|
||||
if access_token:
|
||||
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
|
||||
request = Request()
|
||||
credits.refresh(request)
|
||||
token = credits.token
|
||||
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
|
||||
else:
|
||||
self.client = AnthropicVertex(region=region, project_id=project_id)
|
||||
else:
|
||||
import vertexai.generative_models as glm
|
||||
from google.cloud import aiplatform
|
||||
|
||||
if access_token:
|
||||
credits = service_account.Credentials.from_service_account_info(access_token)
|
||||
aiplatform.init(credentials=credits, project=project_id, location=region)
|
||||
else:
|
||||
aiplatform.init(project=project_id, location=region)
|
||||
self.client = glm.GenerativeModel(model_name=self.model_name)
|
||||
Base.__init__(self, **kwargs)
|
||||
|
||||
def describe(self, image):
|
||||
if "claude" in self.model_name:
|
||||
return AnthropicCV.describe(self, image)
|
||||
else:
|
||||
return GeminiCV.describe(self, image)
|
||||
|
||||
def describe_with_prompt(self, image, prompt=None):
|
||||
if "claude" in self.model_name:
|
||||
return AnthropicCV.describe_with_prompt(self, image, prompt)
|
||||
else:
|
||||
return GeminiCV.describe_with_prompt(self, image, prompt)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[]):
|
||||
if "claude" in self.model_name:
|
||||
return AnthropicCV.chat(self, system, history, gen_conf, images)
|
||||
else:
|
||||
return GeminiCV.chat(self, system, history, gen_conf, images)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf, images=[]):
|
||||
if "claude" in self.model_name:
|
||||
for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
else:
|
||||
for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
|
||||
yield ans
|
||||
Reference in New Issue
Block a user