将flask改成fastapi

This commit is contained in:
2025-10-13 13:18:03 +08:00
commit 88db2539b0
476 changed files with 739741 additions and 0 deletions

58
rag/flow/__init__.py Normal file
View File

@@ -0,0 +1,58 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
import inspect
import pkgutil
from pathlib import Path
from types import ModuleType
from typing import Dict, Type
__all_classes: Dict[str, Type] = {}
_pkg_dir = Path(__file__).resolve().parent
_pkg_name = __name__
def _should_skip_module(mod_name: str) -> bool:
leaf = mod_name.rsplit(".", 1)[-1]
return leaf in {"__init__"} or leaf.startswith("__") or leaf.startswith("_") or leaf.startswith("base")
def _import_submodules() -> None:
for modinfo in pkgutil.walk_packages([str(_pkg_dir)], prefix=_pkg_name + "."): # noqa: F821
mod_name = modinfo.name
if _should_skip_module(mod_name): # noqa: F821
continue
try:
module = importlib.import_module(mod_name)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {mod_name}: {e}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if inspect.isclass(obj) and obj.__module__ == module.__name__ and not name.startswith("_"):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _pkg_dir, _pkg_name, _import_submodules, _extract_classes_from_module

61
rag/flow/base.py Normal file
View File

@@ -0,0 +1,61 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from functools import partial
from typing import Any
import trio
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
class ProcessParamBase(ComponentParamBase):
def __init__(self):
super().__init__()
self.timeout = 100000000
self.persist_logs = True
class ProcessBase(ComponentBase):
def __init__(self, pipeline, id, param: ProcessParamBase):
super().__init__(pipeline, id, param)
if hasattr(self._canvas, "callback"):
self.callback = partial(self._canvas.callback, id)
else:
self.callback = partial(lambda *args, **kwargs: None, id)
async def invoke(self, **kwargs) -> dict[str, Any]:
self.set_output("_created_time", time.perf_counter())
for k, v in kwargs.items():
self.set_output(k, v)
try:
with trio.fail_after(self._param.timeout):
await self._invoke(**kwargs)
self.callback(1, "Done")
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self.callback(-1, str(e))
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10 * 60)))
async def _invoke(self, **kwargs):
raise NotImplementedError()

View File

@@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,63 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from copy import deepcopy
from agent.component.llm import LLMParam, LLM
from rag.flow.base import ProcessBase, ProcessParamBase
class ExtractorParam(ProcessParamBase, LLMParam):
def __init__(self):
super().__init__()
self.field_name = ""
def check(self):
super().check()
self.check_empty(self.field_name, "Result Destination")
class Extractor(ProcessBase, LLM):
component_name = "Extractor"
async def _invoke(self, **kwargs):
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to generate.")
inputs = self.get_input_elements()
chunks = []
chunks_key = ""
args = {}
for k, v in inputs.items():
args[k] = v["value"]
if isinstance(args[k], list):
chunks = deepcopy(args[k])
chunks_key = k
if chunks:
prog = 0
for i, ck in enumerate(chunks):
args[chunks_key] = ck["text"]
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
ck[self._param.field_name] = self._generate(msg)
prog += 1./len(chunks)
if i % (len(chunks)//100+1) == 1:
self.callback(prog, f"{i+1} / {len(chunks)}")
self.set_output("chunks", chunks)
else:
msg, sys_prompt = self._sys_prompt_and_msg([], args)
msg.insert(0, {"role": "system", "content": sys_prompt})
self.set_output("chunks", [{self._param.field_name: self._generate(msg)}])

View File

@@ -0,0 +1,38 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class ExtractorFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html", "chunks"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

50
rag/flow/file.py Normal file
View File

@@ -0,0 +1,50 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db.services.document_service import DocumentService
from rag.flow.base import ProcessBase, ProcessParamBase
class FileParam(ProcessParamBase):
def __init__(self):
super().__init__()
def check(self):
pass
def get_input_form(self) -> dict[str, dict]:
return {}
class File(ProcessBase):
component_name = "File"
async def _invoke(self, **kwargs):
if self._canvas._doc_id:
e, doc = DocumentService.get_by_id(self._canvas._doc_id)
if not e:
self.set_output("_ERROR", f"Document({self._canvas._doc_id}) not found!")
return
#b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
#self.set_output("blob", STORAGE_IMPL.get(b, n))
self.set_output("name", doc.name)
else:
file = kwargs.get("file")
self.set_output("name", file["name"])
self.set_output("file", file)
#self.set_output("blob", FileService.get_blob(file["created_by"], file["id"]))
self.callback(1, "File fetched.")

View File

@@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,186 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import re
from copy import deepcopy
from functools import partial
import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.hierarchical_merger.schema import HierarchicalMergerFromUpstream
from rag.nlp import concat_img
from rag.utils.storage_factory import STORAGE_IMPL
class HierarchicalMergerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.levels = []
self.hierarchy = None
def check(self):
self.check_empty(self.levels, "Hierarchical setups.")
self.check_empty(self.hierarchy, "Hierarchy number.")
def get_input_form(self) -> dict[str, dict]:
return {}
class HierarchicalMerger(ProcessBase):
component_name = "HierarchicalMerger"
async def _invoke(self, **kwargs):
try:
from_upstream = HierarchicalMergerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to merge hierarchically.")
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
lines = [ln for ln in payload.split("\n") if ln]
else:
arr = from_upstream.chunks if from_upstream.output_format == "chunks" else from_upstream.json_result
lines = [o.get("text", "") for o in arr]
sections, section_images = [], []
for o in arr or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("img_id"))
matches = []
for txt in lines:
good = False
for lvl, regs in enumerate(self._param.levels):
for reg in regs:
if re.search(reg, txt):
matches.append(lvl)
good = True
break
if good:
break
if not good:
matches.append(len(self._param.levels))
assert len(matches) == len(lines), f"{len(matches)} vs. {len(lines)}"
root = {
"level": -1,
"index": -1,
"texts": [],
"children": []
}
for i, m in enumerate(matches):
if m == 0:
root["children"].append({
"level": m,
"index": i,
"texts": [],
"children": []
})
elif m == len(self._param.levels):
def dfs(b):
if not b["children"]:
b["texts"].append(i)
else:
dfs(b["children"][-1])
dfs(root)
else:
def dfs(b):
nonlocal m, i
if not b["children"] or m == b["level"] + 1:
b["children"].append({
"level": m,
"index": i,
"texts": [],
"children": []
})
return
dfs(b["children"][-1])
dfs(root)
all_pathes = []
def dfs(n, path, depth):
nonlocal all_pathes
if not n["children"] and path:
all_pathes.append(path)
for nn in n["children"]:
if depth < self._param.hierarchy:
_path = deepcopy(path)
else:
_path = path
_path.extend([nn["index"], *nn["texts"]])
dfs(nn, _path, depth+1)
if depth == self._param.hierarchy:
all_pathes.append(_path)
for i in range(len(lines)):
print(i, lines[i])
dfs(root, [], 0)
if root["texts"]:
all_pathes.insert(0, root["texts"])
if from_upstream.output_format in ["markdown", "text", "html"]:
cks = []
for path in all_pathes:
txt = ""
for i in path:
txt += lines[i] + "\n"
cks.append(txt)
self.set_output("chunks", [{"text": c} for c in cks if c])
else:
cks = []
images = []
for path in all_pathes:
txt = ""
img = None
for i in path:
txt += lines[i] + "\n"
concat_img(img, id2image(section_images[i], partial(STORAGE_IMPL.get)))
cks.append(txt)
images.append(img)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(cks, images)
]
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), get_uuid())
self.set_output("chunks", cks)
self.callback(1, "Done.")

View File

@@ -0,0 +1,37 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class HierarchicalMergerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "chunks"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@@ -0,0 +1,14 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

514
rag/flow/parser/parser.py Normal file
View File

@@ -0,0 +1,514 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import os
import random
from functools import partial
import trio
import numpy as np
from PIL import Image
from api.db import LLMType
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.utils import get_uuid
from api.utils.base64_image import image2id
from deepdoc.parser import ExcelParser
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
from rag.app.naive import Docx
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.parser.schema import ParserFromUpstream
from rag.llm.cv_model import Base as VLM
from rag.utils.storage_factory import STORAGE_IMPL
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.allowed_output_format = {
"pdf": [
"json",
"markdown",
],
"spreadsheet": [
"json",
"markdown",
"html",
],
"word": [
"json",
],
"slides": [
"json",
],
"image": [
"text"
],
"email": ["text", "json"],
"text&markdown": [
"text",
"json"
],
"audio": [
"json"
],
"video": [],
}
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"lang": "Chinese",
"suffix": [
"pdf",
],
"output_format": "json",
},
"spreadsheet": {
"output_format": "html",
"suffix": [
"xls",
"xlsx",
"csv",
],
},
"word": {
"suffix": [
"doc",
"docx",
],
"output_format": "json",
},
"text&markdown": {
"suffix": ["md", "markdown", "mdx", "txt"],
"output_format": "json",
},
"slides": {
"suffix": [
"pptx",
],
"output_format": "json",
},
"image": {
"parse_method": "ocr",
"llm_id": "",
"lang": "Chinese",
"system_prompt": "",
"suffix": ["jpg", "jpeg", "png", "gif"],
"output_format": "text",
},
"email": {
"suffix": [
"eml", "msg"
],
"fields": ["from", "to", "cc", "bcc", "date", "subject", "body", "attachments", "metadata"],
"output_format": "json",
},
"audio": {
"suffix":[
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"output_format": "json",
},
"video": {},
}
def check(self):
pdf_config = self.setups.get("pdf", {})
if pdf_config:
pdf_parse_method = pdf_config.get("parse_method", "")
self.check_empty(pdf_parse_method, "Parse method abnormal.")
if pdf_parse_method.lower() not in ["deepdoc", "plain_text"]:
self.check_empty(pdf_config.get("lang", ""), "PDF VLM language")
pdf_output_format = pdf_config.get("output_format", "")
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
spreadsheet_config = self.setups.get("spreadsheet", "")
if spreadsheet_config:
spreadsheet_output_format = spreadsheet_config.get("output_format", "")
self.check_valid_value(spreadsheet_output_format, "Spreadsheet output format abnormal.", self.allowed_output_format["spreadsheet"])
doc_config = self.setups.get("word", "")
if doc_config:
doc_output_format = doc_config.get("output_format", "")
self.check_valid_value(doc_output_format, "Word processer document output format abnormal.", self.allowed_output_format["word"])
slides_config = self.setups.get("slides", "")
if slides_config:
slides_output_format = slides_config.get("output_format", "")
self.check_valid_value(slides_output_format, "Slides output format abnormal.", self.allowed_output_format["slides"])
image_config = self.setups.get("image", "")
if image_config:
image_parse_method = image_config.get("parse_method", "")
if image_parse_method not in ["ocr"]:
self.check_empty(image_config.get("lang", ""), "Image VLM language")
text_config = self.setups.get("text&markdown", "")
if text_config:
text_output_format = text_config.get("output_format", "")
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text&markdown"])
audio_config = self.setups.get("audio", "")
if audio_config:
self.check_empty(audio_config.get("llm_id"), "Audio VLM")
audio_language = audio_config.get("lang", "")
self.check_empty(audio_language, "Language")
email_config = self.setups.get("email", "")
if email_config:
email_output_format = email_config.get("output_format", "")
self.check_valid_value(email_output_format, "Email output format abnormal.", self.allowed_output_format["email"])
def get_input_form(self) -> dict[str, dict]:
return {}
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method").lower() == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method").lower() == "plain_text":
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]
else:
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("parse_method"), lang=self._param.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
if conf.get("output_format") == "json":
self.set_output("json", bboxes)
if conf.get("output_format") == "markdown":
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _spreadsheet(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
conf = self._param.setups["spreadsheet"]
self.set_output("output_format", conf["output_format"])
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
htmls = spreadsheet_parser.html(blob, 1000000000)
self.set_output("html", htmls[0])
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", spreadsheet_parser.markdown(blob))
def _word(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
conf = self._param.setups["word"]
self.set_output("output_format", conf["output_format"])
docx_parser = Docx()
sections, tbls = docx_parser(name, binary=blob)
sections = [{"text": section[0], "image": section[1]} for section in sections if section]
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
# json
assert conf.get("output_format") == "json", "have to be json for doc"
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _slides(self, name, blob):
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PowerPoint Document")
conf = self._param.setups["slides"]
self.set_output("output_format", conf["output_format"])
ppt_parser = ppt_parser()
txts = ppt_parser(blob, 0, 100000, None)
sections = [{"text": section} for section in txts if section.strip()]
# json
assert conf.get("output_format") == "json", "have to be json for ppt"
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _markdown(self, name, blob):
from functools import reduce
from rag.app.naive import Markdown as naive_markdown_parser
from rag.nlp import concat_img
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
conf = self._param.setups["text&markdown"]
self.set_output("output_format", conf["output_format"])
markdown_parser = naive_markdown_parser()
sections, tables = markdown_parser(name, blob, separate_tables=False)
if conf.get("output_format") == "json":
json_results = []
for section_text, _ in sections:
json_result = {
"text": section_text,
}
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
json_result["image"] = combined_image
json_results.append(json_result)
self.set_output("json", json_results)
else:
self.set_output("text", "\n".join([section_text for section_text, _ in sections]))
def _image(self, name, blob):
from deepdoc.vision import OCR
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
conf = self._param.setups["image"]
self.set_output("output_format", conf["output_format"])
img = Image.open(io.BytesIO(blob)).convert("RGB")
if conf["parse_method"] == "ocr":
# use ocr, recognize chars only
ocr = OCR()
bxs = ocr(np.array(img)) # return boxes and recognize result
txt = "\n".join([t[0] for _, t in bxs if t[0]])
else:
lang = conf["lang"]
# use VLM to describe the picture
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["parse_method"], lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format="JPEG")
img_binary.seek(0)
system_prompt = conf.get("system_prompt")
if system_prompt:
txt = cv_model.describe_with_prompt(img_binary.read(), system_prompt)
else:
txt = cv_model.describe(img_binary.read())
self.set_output("text", txt)
def _audio(self, name, blob):
import os
import tempfile
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
conf = self._param.setups["audio"]
self.set_output("output_format", conf["output_format"])
lang = conf["lang"]
_, ext = os.path.splitext(name)
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
tmpf.write(blob)
tmpf.flush()
tmp_path = os.path.abspath(tmpf.name)
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
txt = seq2txt_mdl.transcription(tmp_path)
self.set_output("text", txt)
def _email(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on an email.")
email_content = {}
conf = self._param.setups["email"]
target_fields = conf["fields"]
_, ext = os.path.splitext(name)
if ext == ".eml":
# handle eml file
from email import policy
from email.parser import BytesParser
msg = BytesParser(policy=policy.default).parse(io.BytesIO(blob))
email_content['metadata'] = {}
# handle header info
for header, value in msg.items():
# get fields like from, to, cc, bcc, date, subject
if header.lower() in target_fields:
email_content[header.lower()] = value
# get metadata
elif header.lower() not in ["from", "to", "cc", "bcc", "date", "subject"]:
email_content["metadata"][header.lower()] = value
# get body
if "body" in target_fields:
body_text, body_html = [], []
def _add_content(m, content_type):
if content_type == "text/plain":
body_text.append(
m.get_payload(decode=True).decode(m.get_content_charset())
)
elif content_type == "text/html":
body_html.append(
m.get_payload(decode=True).decode(m.get_content_charset())
)
elif "multipart" in content_type:
if m.is_multipart():
for part in m.iter_parts():
_add_content(part, part.get_content_type())
_add_content(msg, msg.get_content_type())
email_content["text"] = body_text
email_content["text_html"] = body_html
# get attachment
if "attachments" in target_fields:
attachments = []
for part in msg.iter_attachments():
content_disposition = part.get("Content-Disposition")
if content_disposition:
dispositions = content_disposition.strip().split(";")
if dispositions[0].lower() == "attachment":
filename = part.get_filename()
payload = part.get_payload(decode=True)
attachments.append({
"filename": filename,
"payload": payload,
})
email_content["attachments"] = attachments
else:
# handle msg file
import extract_msg
print("handle a msg file.")
msg = extract_msg.Message(blob)
# handle header info
basic_content = {
"from": msg.sender,
"to": msg.to,
"cc": msg.cc,
"bcc": msg.bcc,
"date": msg.date,
"subject": msg.subject,
}
email_content.update({k: v for k, v in basic_content.items() if k in target_fields})
# get metadata
email_content['metadata'] = {
'message_id': msg.messageId,
'in_reply_to': msg.inReplyTo,
}
# get body
if "body" in target_fields:
email_content["text"] = msg.body # usually empty. try text_html instead
email_content["text_html"] = msg.htmlBody
# get attachments
if "attachments" in target_fields:
attachments = []
for t in msg.attachments:
attachments.append({
"filename": t.name,
"payload": t.data # binary
})
email_content["attachments"] = attachments
if conf["output_format"] == "json":
self.set_output("json", [email_content])
else:
content_txt = ''
for k, v in email_content.items():
if isinstance(v, str):
# basic info
content_txt += f'{k}:{v}' + "\n"
elif isinstance(v, dict):
# metadata
content_txt += f'{k}:{json.dumps(v)}' + "\n"
elif isinstance(v, list):
# attachments or others
for fb in v:
if isinstance(fb, dict):
# attachments
content_txt += f'{fb["filename"]}:{fb["payload"]}' + "\n"
else:
# str, usually plain text
content_txt += fb
self.set_output("text", content_txt)
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
"text&markdown": self._markdown,
"spreadsheet": self._spreadsheet,
"slides": self._slides,
"word": self._word,
"image": self._image,
"audio": self._audio,
"email": self._email,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
name = from_upstream.name
if self._canvas._doc_id:
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
blob = STORAGE_IMPL.get(b, n)
else:
blob = FileService.get_blob(from_upstream.file["created_by"], from_upstream.file["id"])
done = False
for p_type, conf in self._param.setups.items():
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], name, blob)
done = True
break
if not done:
raise Exception("No suitable for file extension: `.%s`" % from_upstream.name.split(".")[-1].lower())
outs = self.output()
async with trio.open_nursery() as nursery:
for d in outs.get("json", []):
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), get_uuid())

24
rag/flow/parser/schema.py Normal file
View File

@@ -0,0 +1,24 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pydantic import BaseModel, ConfigDict, Field
class ParserFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
model_config = ConfigDict(populate_by_name=True, extra="forbid")

174
rag/flow/pipeline.py Normal file
View File

@@ -0,0 +1,174 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import random
from timeit import default_timer as timer
import trio
from agent.canvas import Graph
from api.db.services.document_service import DocumentService
from api.db.services.task_service import has_canceled, TaskService, CANVAS_DEBUG_DOC_ID
from rag.utils.redis_conn import REDIS_CONN
class Pipeline(Graph):
def __init__(self, dsl: str|dict, tenant_id=None, doc_id=None, task_id=None, flow_id=None):
if isinstance(dsl, dict):
dsl = json.dumps(dsl, ensure_ascii=False)
super().__init__(dsl, tenant_id, task_id)
if doc_id == CANVAS_DEBUG_DOC_ID:
doc_id = None
self._doc_id = doc_id
self._flow_id = flow_id
self._kb_id = None
if self._doc_id:
self._kb_id = DocumentService.get_knowledgebase_id(doc_id)
if not self._kb_id:
self._doc_id = None
def callback(self, component_name: str, progress: float | int | None = None, message: str = "") -> None:
from rag.svr.task_executor import TaskCanceledException
log_key = f"{self._flow_id}-{self.task_id}-logs"
timestamp = timer()
if has_canceled(self.task_id):
progress = -1
message += "[CANCEL]"
try:
bin = REDIS_CONN.get(log_key)
obj = json.loads(bin.encode("utf-8"))
if obj:
if obj[-1]["component_id"] == component_name:
obj[-1]["trace"].append(
{
"progress": progress,
"message": message,
"datetime": datetime.datetime.now().strftime("%H:%M:%S"),
"timestamp": timestamp,
"elapsed_time": timestamp - obj[-1]["trace"][-1]["timestamp"],
}
)
else:
obj.append(
{
"component_id": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S"), "timestamp": timestamp, "elapsed_time": 0}],
}
)
else:
obj = [
{
"component_id": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S"), "timestamp": timestamp, "elapsed_time": 0}],
}
]
if component_name != "END" and self._doc_id and self.task_id:
percentage = 1.0 / len(self.components.items())
finished = 0.0
for o in obj:
for t in o["trace"]:
if t["progress"] < 0:
finished = -1
break
if finished < 0:
break
finished += o["trace"][-1]["progress"] * percentage
msg = ""
if len(obj[-1]["trace"]) == 1:
msg += f"\n-------------------------------------\n[{self.get_component_name(o['component_id'])}]:\n"
t = obj[-1]["trace"][-1]
msg += "%s: %s\n" % (t["datetime"], t["message"])
TaskService.update_progress(self.task_id, {"progress": finished, "progress_msg": msg})
elif component_name == "END" and not self._doc_id:
obj[-1]["trace"][-1]["dsl"] = json.loads(str(self))
REDIS_CONN.set_obj(log_key, obj, 60 * 30)
except Exception as e:
logging.exception(e)
if has_canceled(self.task_id):
raise TaskCanceledException(message)
def fetch_logs(self):
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
if bin:
return json.loads(bin.encode("utf-8"))
except Exception as e:
logging.exception(e)
return []
async def run(self, **kwargs):
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
REDIS_CONN.set_obj(log_key, [], 60 * 10)
except Exception as e:
logging.exception(e)
self.error = ""
if not self.path:
self.path.append("File")
cpn_obj = self.get_component_obj(self.path[0])
await cpn_obj.invoke(**kwargs)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
self.callback(cpn_obj.component_name, -1, self.error)
if self._doc_id:
TaskService.update_progress(self.task_id, {
"progress": random.randint(0, 5) / 100.0,
"progress_msg": "Start the pipeline...",
"begin_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")})
idx = len(self.path) - 1
cpn_obj = self.get_component_obj(self.path[idx])
idx += 1
self.path.extend(cpn_obj.get_downstream())
while idx < len(self.path) and not self.error:
last_cpn = self.get_component_obj(self.path[idx - 1])
cpn_obj = self.get_component_obj(self.path[idx])
async def invoke():
nonlocal last_cpn, cpn_obj
await cpn_obj.invoke(**last_cpn.output())
#if inspect.iscoroutinefunction(cpn_obj.invoke):
# await cpn_obj.invoke(**last_cpn.output())
#else:
# cpn_obj.invoke(**last_cpn.output())
async with trio.open_nursery() as nursery:
nursery.start_soon(invoke)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
self.callback(cpn_obj._id, -1, self.error)
break
idx += 1
self.path.extend(cpn_obj.get_downstream())
self.callback("END", 1 if not self.error else -1, json.dumps(self.get_component_obj(self.path[-1]).output(), ensure_ascii=False))
if not self.error:
return self.get_component_obj(self.path[-1]).output()
TaskService.update_progress(self.task_id, {
"progress": -1,
"progress_msg": f"[ERROR]: {self.error}"})
return {}

View File

@@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,38 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class SplitterFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@@ -0,0 +1,111 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from functools import partial
import trio
from api.utils import get_uuid
from api.utils.base64_image import id2image, image2id
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.splitter.schema import SplitterFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images
from rag.utils.storage_factory import STORAGE_IMPL
class SplitterParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.chunk_token_size = 512
self.delimiters = ["\n"]
self.overlapped_percent = 0
def check(self):
self.check_empty(self.delimiters, "Delimiters.")
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
def get_input_form(self) -> dict[str, dict]:
return {}
class Splitter(ProcessBase):
component_name = "Splitter"
async def _invoke(self, **kwargs):
try:
from_upstream = SplitterFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
deli = ""
for d in self._param.delimiters:
if len(d) > 1:
deli += f"`{d}`"
else:
deli += d
self.set_output("output_format", "chunks")
self.callback(random.randint(1, 5) / 100.0, "Start to split into chunks.")
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
cks = naive_merge(
payload,
self._param.chunk_token_size,
deli,
self._param.overlapped_percent,
)
self.set_output("chunks", [{"text": c.strip()} for c in cks if c.strip()])
self.callback(1, "Done.")
return
# json
sections, section_images = [], []
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(id2image(o.get("img_id"), partial(STORAGE_IMPL.get)))
chunks, images = naive_merge_with_images(
sections,
section_images,
self._param.chunk_token_size,
deli,
self._param.overlapped_percent,
)
cks = [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(c)],
}
for c, img in zip(chunks, images) if c.strip()
]
async with trio.open_nursery() as nursery:
for d in cks:
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put), get_uuid())
self.set_output("chunks", cks)
self.callback(1, "Done.")

61
rag/flow/tests/client.py Normal file
View File

@@ -0,0 +1,61 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import trio
from api import settings
from rag.flow.pipeline import Pipeline
def print_logs(pipeline: Pipeline):
last_logs = "[]"
while True:
time.sleep(5)
logs = pipeline.fetch_logs()
logs_str = json.dumps(logs, ensure_ascii=False)
if logs_str != last_logs:
print(logs_str)
last_logs = logs_str
if __name__ == "__main__":
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"general_pdf_all.json",
)
parser.add_argument("-s", "--dsl", default=dsl_default_path, help="input dsl", action="store", required=False)
parser.add_argument("-d", "--doc_id", default=False, help="Document ID", action="store", required=True)
parser.add_argument("-t", "--tenant_id", default=False, help="Tenant ID", action="store", required=True)
args = parser.parse_args()
settings.init_settings()
pipeline = Pipeline(open(args.dsl, "r").read(), tenant_id=args.tenant_id, doc_id=args.doc_id, task_id="xxxx", flow_id="xxx")
pipeline.reset()
exe = ThreadPoolExecutor(max_workers=5)
thr = exe.submit(print_logs, pipeline)
# queue_dataflow(dsl=open(args.dsl, "r").read(), tenant_id=args.tenant_id, doc_id=args.doc_id, task_id="xxxx", flow_id="xxx", priority=0)
trio.run(pipeline.run)
thr.result()

View File

@@ -0,0 +1,139 @@
{
"components": {
"File": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["Parser:0"],
"upstream": []
},
"Parser:0": {
"obj": {
"component_name": "Parser",
"params": {
"setups": {
"pdf": {
"parse_method": "deepdoc",
"vlm_name": "",
"lang": "Chinese",
"suffix": [
"pdf"
],
"output_format": "json"
},
"spreadsheet": {
"suffix": [
"xls",
"xlsx",
"csv"
],
"output_format": "html"
},
"word": {
"suffix": [
"doc",
"docx"
],
"output_format": "json"
},
"slides": {
"parse_method": "presentation",
"suffix": [
"pptx"
],
"output_format": "json"
},
"markdown": {
"suffix": [
"md",
"markdown"
],
"output_format": "json"
},
"text": {
"suffix": ["txt"],
"output_format": "json"
},
"image": {
"parse_method": "vlm",
"llm_id":"glm-4.5v",
"lang": "Chinese",
"suffix": [
"jpg",
"jpeg",
"png",
"gif"
],
"output_format": "text"
},
"audio": {
"suffix": [
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"lang": "Chinese",
"llm_id": "SenseVoiceSmall",
"output_format": "json"
},
"email": {
"suffix": [
"msg"
],
"fields": [
"from",
"to",
"cc",
"bcc",
"date",
"subject",
"body",
"attachments"
],
"output_format": "json"
}
}
}
},
"downstream": ["Splitter:0"],
"upstream": ["Begin"]
},
"Splitter:0": {
"obj": {
"component_name": "Splitter",
"params": {
"chunk_token_size": 512,
"delimiters": ["\n"],
"overlapped_percent": 0
}
},
"downstream": ["Tokenizer:0"],
"upstream": ["Parser:0"]
},
"Tokenizer:0": {
"obj": {
"component_name": "Tokenizer",
"params": {
}
},
"downstream": [],
"upstream": ["Chunker:0"]
}
},
"path": []
}

View File

@@ -0,0 +1,84 @@
{
"components": {
"File": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["Parser:0"],
"upstream": []
},
"Parser:0": {
"obj": {
"component_name": "Parser",
"params": {
"setups": {
"pdf": {
"parse_method": "deepdoc",
"vlm_name": "",
"lang": "Chinese",
"suffix": [
"pdf"
],
"output_format": "json"
},
"spreadsheet": {
"suffix": [
"xls",
"xlsx",
"csv"
],
"output_format": "html"
},
"word": {
"suffix": [
"doc",
"docx"
],
"output_format": "json"
},
"markdown": {
"suffix": [
"md",
"markdown"
],
"output_format": "text"
},
"text": {
"suffix": ["txt"],
"output_format": "json"
}
}
}
},
"downstream": ["Splitter:0"],
"upstream": ["File"]
},
"Splitter:0": {
"obj": {
"component_name": "Splitter",
"params": {
"chunk_token_size": 512,
"delimiters": ["\r\n"],
"overlapped_percent": 0
}
},
"downstream": ["HierarchicalMerger:0"],
"upstream": ["Parser:0"]
},
"HierarchicalMerger:0": {
"obj": {
"component_name": "HierarchicalMerger",
"params": {
"levels": [["^#[^#]"], ["^##[^#]"], ["^###[^#]"], ["^####[^#]"]],
"hierarchy": 2
}
},
"downstream": [],
"upstream": ["Splitter:0"]
}
},
"path": []
}

View File

@@ -0,0 +1,14 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,53 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field, model_validator
class TokenizerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str = ""
file: dict | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html", "chunks"] | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
@model_validator(mode="after")
def _check_payloads(self) -> "TokenizerFromUpstream":
if self.chunks:
return self
if self.output_format in {"markdown", "text", "html"}:
if self.output_format == "markdown" and not self.markdown_result:
raise ValueError("output_format=markdown requires a markdown payload (field: 'markdown' or 'markdown_result').")
if self.output_format == "text" and not self.text_result:
raise ValueError("output_format=text requires a text payload (field: 'text' or 'text_result').")
if self.output_format == "html" and not self.html_result:
raise ValueError("output_format=text requires a html payload (field: 'html' or 'html_result').")
else:
if not self.json_result and not self.chunks:
raise ValueError("When no chunks are provided and output_format is not markdown/text, a JSON list payload is required (field: 'json' or 'json_result').")
return self

View File

@@ -0,0 +1,176 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import re
import numpy as np
import trio
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.utils.api_utils import timeout
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.tokenizer.schema import TokenizerFromUpstream
from rag.nlp import rag_tokenizer
from rag.settings import EMBEDDING_BATCH_SIZE
from rag.svr.task_executor import embed_limiter
from rag.utils import truncate
class TokenizerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.search_method = ["full_text", "embedding"]
self.filename_embd_weight = 0.1
self.fields = ["text"]
def check(self):
for v in self.search_method:
self.check_valid_value(v.lower(), "Chunk method abnormal.", ["full_text", "embedding"])
def get_input_form(self) -> dict[str, dict]:
return {}
class Tokenizer(ProcessBase):
component_name = "Tokenizer"
async def _embedding(self, name, chunks):
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
token_count = 0
if self._canvas._kb_id:
e, kb = KnowledgebaseService.get_by_id(self._canvas._kb_id)
embedding_id = kb.embd_id
else:
e, ten = TenantService.get_by_id(self._canvas._tenant_id)
embedding_id = ten.embd_id
embedding_model = LLMBundle(self._canvas._tenant_id, LLMType.EMBEDDING, llm_name=embedding_id)
texts = []
for c in chunks:
txt = ""
for f in self._param.fields:
f = c.get(f)
if isinstance(f, str):
txt += f
elif isinstance(f, list):
txt += "\n".join(f)
texts.append(re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", txt))
vts, c = embedding_model.encode([name])
token_count += c
tts = np.concatenate([vts[0] for _ in range(len(texts))], axis=0)
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length - 10) for c in txts])
cnts_ = np.array([])
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + EMBEDDING_BATCH_SIZE]))
if len(cnts_) == 0:
cnts_ = vts
else:
cnts_ = np.concatenate((cnts_, vts), axis=0)
token_count += c
if i % 33 == 32:
self.callback(i * 1.0 / len(texts) / parts / EMBEDDING_BATCH_SIZE + 0.5 * (parts - 1))
cnts = cnts_
title_w = float(self._param.filename_embd_weight)
vects = (title_w * tts + (1 - title_w) * cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
v = vects[i].tolist()
ck["q_%d_vec" % len(v)] = v
return chunks, token_count
async def _invoke(self, **kwargs):
try:
from_upstream = TokenizerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
self.set_output("output_format", "chunks")
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
if "full_text" in self._param.search_method:
self.callback(random.randint(1, 5) / 100.0, "Start to tokenize.")
if from_upstream.chunks:
chunks = from_upstream.chunks
for i, ck in enumerate(chunks):
ck["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", from_upstream.name))
ck["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(ck["title_tks"])
if ck.get("questions"):
ck["question_kwd"] = ck["questions"].split("\n")
ck["question_tks"] = rag_tokenizer.tokenize(str(ck["questions"]))
if ck.get("keywords"):
ck["important_kwd"] = ck["keywords"].split(",")
ck["important_tks"] = rag_tokenizer.tokenize(str(ck["keywords"]))
if ck.get("summary"):
ck["content_ltks"] = rag_tokenizer.tokenize(str(ck["summary"]))
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
else:
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i * 1.0 / len(chunks) / parts)
elif from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else:
payload = from_upstream.html_result
if not payload:
return ""
ck = {"text": payload}
if "full_text" in self._param.search_method:
ck["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", from_upstream.name))
ck["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(ck["title_tks"])
ck["content_ltks"] = rag_tokenizer.tokenize(payload)
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
chunks = [ck]
else:
chunks = from_upstream.json_result
for i, ck in enumerate(chunks):
ck["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", from_upstream.name))
ck["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(ck["title_tks"])
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i * 1.0 / len(chunks) / parts)
self.callback(1.0 / parts, "Finish tokenizing.")
if "embedding" in self._param.search_method:
self.callback(random.randint(1, 5) / 100.0 + 0.5 * (parts - 1), "Start embedding inference.")
if from_upstream.name.strip() == "":
logging.warning("Tokenizer: empty name provided from upstream, embedding may be not accurate.")
chunks, token_count = await self._embedding(from_upstream.name, chunks)
self.set_output("embedding_token_consumption", token_count)
self.callback(1.0, "Finish embedding.")
self.set_output("chunks", chunks)