将flask改成fastapi
This commit is contained in:
603
rag/app/naive.py
Normal file
603
rag/app/naive.py
Normal file
@@ -0,0 +1,603 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
import re
|
||||
from functools import reduce
|
||||
from io import BytesIO
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from docx import Document
|
||||
from docx.image.exceptions import InvalidImageStreamError, UnexpectedEndOfFileError, UnrecognizedImageError
|
||||
from docx.opc.pkgreader import _SerializedRelationships, _SerializedRelationship
|
||||
from docx.opc.oxml import parse_xml
|
||||
from markdown import markdown
|
||||
from PIL import Image
|
||||
from tika import parser
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from deepdoc.parser import DocxParser, ExcelParser, HtmlParser, JsonParser, MarkdownElementExtractor, MarkdownParser, PdfParser, TxtParser
|
||||
from deepdoc.parser.figure_parser import VisionFigureParser, vision_figure_parser_figure_data_wrapper
|
||||
from deepdoc.parser.pdf_parser import PlainParser, VisionParser
|
||||
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_with_images, naive_merge_docx, rag_tokenizer, tokenize_chunks, tokenize_chunks_with_images, tokenize_table
|
||||
|
||||
|
||||
class Docx(DocxParser):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def get_picture(self, document, paragraph):
|
||||
imgs = paragraph._element.xpath('.//pic:pic')
|
||||
if not imgs:
|
||||
return None
|
||||
res_img = None
|
||||
for img in imgs:
|
||||
embed = img.xpath('.//a:blip/@r:embed')
|
||||
if not embed:
|
||||
continue
|
||||
embed = embed[0]
|
||||
try:
|
||||
related_part = document.part.related_parts[embed]
|
||||
image_blob = related_part.image.blob
|
||||
except UnrecognizedImageError:
|
||||
logging.info("Unrecognized image format. Skipping image.")
|
||||
continue
|
||||
except UnexpectedEndOfFileError:
|
||||
logging.info("EOF was unexpectedly encountered while reading an image stream. Skipping image.")
|
||||
continue
|
||||
except InvalidImageStreamError:
|
||||
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
|
||||
continue
|
||||
except UnicodeDecodeError:
|
||||
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
|
||||
continue
|
||||
except Exception:
|
||||
logging.info("The recognized image stream appears to be corrupted. Skipping image.")
|
||||
continue
|
||||
try:
|
||||
image = Image.open(BytesIO(image_blob)).convert('RGB')
|
||||
if res_img is None:
|
||||
res_img = image
|
||||
else:
|
||||
res_img = concat_img(res_img, image)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return res_img
|
||||
|
||||
def __clean(self, line):
|
||||
line = re.sub(r"\u3000", " ", line).strip()
|
||||
return line
|
||||
|
||||
def __get_nearest_title(self, table_index, filename):
|
||||
"""Get the hierarchical title structure before the table"""
|
||||
import re
|
||||
from docx.text.paragraph import Paragraph
|
||||
|
||||
titles = []
|
||||
blocks = []
|
||||
|
||||
# Get document name from filename parameter
|
||||
doc_name = re.sub(r"\.[a-zA-Z]+$", "", filename)
|
||||
if not doc_name:
|
||||
doc_name = "Untitled Document"
|
||||
|
||||
# Collect all document blocks while maintaining document order
|
||||
try:
|
||||
# Iterate through all paragraphs and tables in document order
|
||||
for i, block in enumerate(self.doc._element.body):
|
||||
if block.tag.endswith('p'): # Paragraph
|
||||
p = Paragraph(block, self.doc)
|
||||
blocks.append(('p', i, p))
|
||||
elif block.tag.endswith('tbl'): # Table
|
||||
blocks.append(('t', i, None)) # Table object will be retrieved later
|
||||
except Exception as e:
|
||||
logging.error(f"Error collecting blocks: {e}")
|
||||
return ""
|
||||
|
||||
# Find the target table position
|
||||
target_table_pos = -1
|
||||
table_count = 0
|
||||
for i, (block_type, pos, _) in enumerate(blocks):
|
||||
if block_type == 't':
|
||||
if table_count == table_index:
|
||||
target_table_pos = pos
|
||||
break
|
||||
table_count += 1
|
||||
|
||||
if target_table_pos == -1:
|
||||
return "" # Target table not found
|
||||
|
||||
# Find the nearest heading paragraph in reverse order
|
||||
nearest_title = None
|
||||
for i in range(len(blocks)-1, -1, -1):
|
||||
block_type, pos, block = blocks[i]
|
||||
if pos >= target_table_pos: # Skip blocks after the table
|
||||
continue
|
||||
|
||||
if block_type != 'p':
|
||||
continue
|
||||
|
||||
if block.style and block.style.name and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
|
||||
try:
|
||||
level_match = re.search(r"(\d+)", block.style.name)
|
||||
if level_match:
|
||||
level = int(level_match.group(1))
|
||||
if level <= 7: # Support up to 7 heading levels
|
||||
title_text = block.text.strip()
|
||||
if title_text: # Avoid empty titles
|
||||
nearest_title = (level, title_text)
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error parsing heading level: {e}")
|
||||
|
||||
if nearest_title:
|
||||
# Add current title
|
||||
titles.append(nearest_title)
|
||||
current_level = nearest_title[0]
|
||||
|
||||
# Find all parent headings, allowing cross-level search
|
||||
while current_level > 1:
|
||||
found = False
|
||||
for i in range(len(blocks)-1, -1, -1):
|
||||
block_type, pos, block = blocks[i]
|
||||
if pos >= target_table_pos: # Skip blocks after the table
|
||||
continue
|
||||
|
||||
if block_type != 'p':
|
||||
continue
|
||||
|
||||
if block.style and re.search(r"Heading\s*(\d+)", block.style.name, re.I):
|
||||
try:
|
||||
level_match = re.search(r"(\d+)", block.style.name)
|
||||
if level_match:
|
||||
level = int(level_match.group(1))
|
||||
# Find any heading with a higher level
|
||||
if level < current_level:
|
||||
title_text = block.text.strip()
|
||||
if title_text: # Avoid empty titles
|
||||
titles.append((level, title_text))
|
||||
current_level = level
|
||||
found = True
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error parsing parent heading: {e}")
|
||||
|
||||
if not found: # Break if no parent heading is found
|
||||
break
|
||||
|
||||
# Sort by level (ascending, from highest to lowest)
|
||||
titles.sort(key=lambda x: x[0])
|
||||
# Organize titles (from highest to lowest)
|
||||
hierarchy = [doc_name] + [t[1] for t in titles]
|
||||
return " > ".join(hierarchy)
|
||||
|
||||
return ""
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
|
||||
self.doc = Document(
|
||||
filename) if not binary else Document(BytesIO(binary))
|
||||
pn = 0
|
||||
lines = []
|
||||
last_image = None
|
||||
for p in self.doc.paragraphs:
|
||||
if pn > to_page:
|
||||
break
|
||||
if from_page <= pn < to_page:
|
||||
if p.text.strip():
|
||||
if p.style and p.style.name == 'Caption':
|
||||
former_image = None
|
||||
if lines and lines[-1][1] and lines[-1][2] != 'Caption':
|
||||
former_image = lines[-1][1].pop()
|
||||
elif last_image:
|
||||
former_image = last_image
|
||||
last_image = None
|
||||
lines.append((self.__clean(p.text), [former_image], p.style.name))
|
||||
else:
|
||||
current_image = self.get_picture(self.doc, p)
|
||||
image_list = [current_image]
|
||||
if last_image:
|
||||
image_list.insert(0, last_image)
|
||||
last_image = None
|
||||
lines.append((self.__clean(p.text), image_list, p.style.name if p.style else ""))
|
||||
else:
|
||||
if current_image := self.get_picture(self.doc, p):
|
||||
if lines:
|
||||
lines[-1][1].append(current_image)
|
||||
else:
|
||||
last_image = current_image
|
||||
for run in p.runs:
|
||||
if 'lastRenderedPageBreak' in run._element.xml:
|
||||
pn += 1
|
||||
continue
|
||||
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
||||
pn += 1
|
||||
new_line = [(line[0], reduce(concat_img, line[1]) if line[1] else None) for line in lines]
|
||||
|
||||
tbls = []
|
||||
for i, tb in enumerate(self.doc.tables):
|
||||
title = self.__get_nearest_title(i, filename)
|
||||
html = "<table>"
|
||||
if title:
|
||||
html += f"<caption>Table Location: {title}</caption>"
|
||||
for r in tb.rows:
|
||||
html += "<tr>"
|
||||
i = 0
|
||||
try:
|
||||
while i < len(r.cells):
|
||||
span = 1
|
||||
c = r.cells[i]
|
||||
for j in range(i + 1, len(r.cells)):
|
||||
if c.text == r.cells[j].text:
|
||||
span += 1
|
||||
i = j
|
||||
else:
|
||||
break
|
||||
i += 1
|
||||
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
||||
except Exception as e:
|
||||
logging.warning(f"Error parsing table, ignore: {e}")
|
||||
html += "</tr>"
|
||||
html += "</table>"
|
||||
tbls.append(((None, html), ""))
|
||||
return new_line, tbls
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None, separate_tables_figures=False):
|
||||
start = timer()
|
||||
first_start = start
|
||||
callback(msg="OCR started")
|
||||
self.__images__(
|
||||
filename if not binary else binary,
|
||||
zoomin,
|
||||
from_page,
|
||||
to_page,
|
||||
callback
|
||||
)
|
||||
callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
|
||||
logging.info("OCR({}~{}): {:.2f}s".format(from_page, to_page, timer() - start))
|
||||
|
||||
start = timer()
|
||||
self._layouts_rec(zoomin)
|
||||
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
|
||||
|
||||
start = timer()
|
||||
self._table_transformer_job(zoomin)
|
||||
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
|
||||
|
||||
start = timer()
|
||||
self._text_merge()
|
||||
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
|
||||
|
||||
if separate_tables_figures:
|
||||
tbls, figures = self._extract_table_figure(True, zoomin, True, True, True)
|
||||
self._concat_downward()
|
||||
logging.info("layouts cost: {}s".format(timer() - first_start))
|
||||
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls, figures
|
||||
else:
|
||||
tbls = self._extract_table_figure(True, zoomin, True, True)
|
||||
self._naive_vertical_merge()
|
||||
self._concat_downward()
|
||||
# self._filter_forpages()
|
||||
logging.info("layouts cost: {}s".format(timer() - first_start))
|
||||
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
|
||||
|
||||
|
||||
class Markdown(MarkdownParser):
|
||||
def get_picture_urls(self, sections):
|
||||
if not sections:
|
||||
return []
|
||||
if isinstance(sections, type("")):
|
||||
text = sections
|
||||
elif isinstance(sections[0], type("")):
|
||||
text = sections[0]
|
||||
else:
|
||||
return []
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
html_content = markdown(text)
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
html_images = [img.get('src') for img in soup.find_all('img') if img.get('src')]
|
||||
return html_images
|
||||
|
||||
def get_pictures(self, text):
|
||||
"""Download and open all images from markdown text."""
|
||||
import requests
|
||||
image_urls = self.get_picture_urls(text)
|
||||
images = []
|
||||
# Find all image URLs in text
|
||||
for url in image_urls:
|
||||
try:
|
||||
# check if the url is a local file or a remote URL
|
||||
if url.startswith(('http://', 'https://')):
|
||||
# For remote URLs, download the image
|
||||
response = requests.get(url, stream=True, timeout=30)
|
||||
if response.status_code == 200 and response.headers['Content-Type'].startswith('image/'):
|
||||
img = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
images.append(img)
|
||||
else:
|
||||
# For local file paths, open the image directly
|
||||
from pathlib import Path
|
||||
local_path = Path(url)
|
||||
if not local_path.exists():
|
||||
logging.warning(f"Local image file not found: {url}")
|
||||
continue
|
||||
img = Image.open(url).convert('RGB')
|
||||
images.append(img)
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to download/open image from {url}: {e}")
|
||||
continue
|
||||
|
||||
return images if images else None
|
||||
|
||||
def __call__(self, filename, binary=None, separate_tables=True):
|
||||
if binary:
|
||||
encoding = find_codec(binary)
|
||||
txt = binary.decode(encoding, errors="ignore")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
txt = f.read()
|
||||
|
||||
remainder, tables = self.extract_tables_and_remainder(f'{txt}\n', separate_tables=separate_tables)
|
||||
|
||||
extractor = MarkdownElementExtractor(txt)
|
||||
element_sections = extractor.extract_elements()
|
||||
sections = [(element, "") for element in element_sections]
|
||||
|
||||
tbls = []
|
||||
for table in tables:
|
||||
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
|
||||
return sections, tbls
|
||||
|
||||
def load_from_xml_v2(baseURI, rels_item_xml):
|
||||
"""
|
||||
Return |_SerializedRelationships| instance loaded with the
|
||||
relationships contained in *rels_item_xml*. Returns an empty
|
||||
collection if *rels_item_xml* is |None|.
|
||||
"""
|
||||
srels = _SerializedRelationships()
|
||||
if rels_item_xml is not None:
|
||||
rels_elm = parse_xml(rels_item_xml)
|
||||
for rel_elm in rels_elm.Relationship_lst:
|
||||
if rel_elm.target_ref in ('../NULL', 'NULL'):
|
||||
continue
|
||||
srels._srels.append(_SerializedRelationship(baseURI, rel_elm))
|
||||
return srels
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, excel, txt.
|
||||
This method apply the naive ways to chunk files.
|
||||
Successive text will be sliced into pieces using 'delimiter'.
|
||||
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
||||
"""
|
||||
|
||||
is_english = lang.lower() == "english" # is_english(cks)
|
||||
parser_config = kwargs.get(
|
||||
"parser_config", {
|
||||
"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
||||
}
|
||||
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
||||
res = []
|
||||
pdf_parser = None
|
||||
section_images = None
|
||||
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
# fix "There is no item named 'word/NULL' in the archive", referring to https://github.com/python-openxml/python-docx/issues/1105#issuecomment-1298075246
|
||||
_SerializedRelationships.load_from_xml = load_from_xml_v2
|
||||
sections, tables = Docx()(filename, binary)
|
||||
|
||||
if vision_model:
|
||||
figures_data = vision_figure_parser_figure_data_wrapper(sections)
|
||||
try:
|
||||
docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs)
|
||||
boosted_figures = docx_vision_parser(callback=callback)
|
||||
tables.extend(boosted_figures)
|
||||
except Exception as e:
|
||||
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
st = timer()
|
||||
|
||||
chunks, images = naive_merge_docx(
|
||||
sections, int(parser_config.get(
|
||||
"chunk_token_num", 128)), parser_config.get(
|
||||
"delimiter", "\n!?。;!?"))
|
||||
|
||||
if kwargs.get("section_only", False):
|
||||
return chunks
|
||||
|
||||
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, images))
|
||||
logging.info("naive_merge({}): {}".format(filename, timer() - st))
|
||||
return res
|
||||
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
|
||||
if isinstance(layout_recognizer, bool):
|
||||
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
|
||||
callback(0.1, "Start to parse.")
|
||||
|
||||
if layout_recognizer == "DeepDOC":
|
||||
pdf_parser = Pdf()
|
||||
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
callback(0.15, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
if vision_model:
|
||||
sections, tables, figures = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback, separate_tables_figures=True)
|
||||
callback(0.5, "Basic parsing complete. Proceeding with figure enhancement...")
|
||||
try:
|
||||
pdf_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures, **kwargs)
|
||||
boosted_figures = pdf_vision_parser(callback=callback)
|
||||
tables.extend(boosted_figures)
|
||||
except Exception as e:
|
||||
callback(0.6, f"Visual model error: {e}. Skipping figure parsing enhancement.")
|
||||
tables.extend(figures)
|
||||
else:
|
||||
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
else:
|
||||
if layout_recognizer == "Plain Text":
|
||||
pdf_parser = PlainParser()
|
||||
else:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT, llm_name=layout_recognizer, lang=lang)
|
||||
pdf_parser = VisionParser(vision_model=vision_model, **kwargs)
|
||||
|
||||
sections, tables = pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page,
|
||||
callback=callback)
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.(csv|xlsx?)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = ExcelParser()
|
||||
if parser_config.get("html4excel"):
|
||||
sections = [(_, "") for _ in excel_parser.html(binary, 12) if _]
|
||||
else:
|
||||
sections = [(_, "") for _ in excel_parser(binary) if _]
|
||||
parser_config["chunk_token_num"] = 12800
|
||||
|
||||
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt|sql)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
sections = TxtParser()(filename, binary,
|
||||
parser_config.get("chunk_token_num", 128),
|
||||
parser_config.get("delimiter", "\n!?;。;!?"))
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
markdown_parser = Markdown(int(parser_config.get("chunk_token_num", 128)))
|
||||
sections, tables = markdown_parser(filename, binary, separate_tables=False)
|
||||
|
||||
try:
|
||||
vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
if vision_model:
|
||||
# Process images for each section
|
||||
section_images = []
|
||||
for idx, (section_text, _) in enumerate(sections):
|
||||
images = markdown_parser.get_pictures(section_text) if section_text else None
|
||||
|
||||
if images:
|
||||
# If multiple images found, combine them using concat_img
|
||||
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
|
||||
section_images.append(combined_image)
|
||||
markdown_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data= [((combined_image, ["markdown image"]), [(0, 0, 0, 0, 0)])], **kwargs)
|
||||
boosted_figures = markdown_vision_parser(callback=callback)
|
||||
sections[idx] = (section_text + "\n\n" + "\n\n".join([fig[0][1] for fig in boosted_figures]), sections[idx][1])
|
||||
else:
|
||||
section_images.append(None)
|
||||
else:
|
||||
logging.warning("No visual model detected. Skipping figure parsing enhancement.")
|
||||
|
||||
res = tokenize_table(tables, doc, is_english)
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
chunk_token_num = int(parser_config.get("chunk_token_num", 128))
|
||||
sections = HtmlParser()(filename, binary, chunk_token_num)
|
||||
sections = [(_, "") for _ in sections if _]
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.(json|jsonl|ldjson)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
chunk_token_num = int(parser_config.get("chunk_token_num", 128))
|
||||
sections = JsonParser(chunk_token_num)(binary)
|
||||
sections = [(_, "") for _ in sections if _]
|
||||
callback(0.8, "Finish parsing.")
|
||||
|
||||
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
binary = BytesIO(binary)
|
||||
doc_parsed = parser.from_buffer(binary)
|
||||
if doc_parsed.get('content', None) is not None:
|
||||
sections = doc_parsed['content'].split('\n')
|
||||
sections = [(_, "") for _ in sections if _]
|
||||
callback(0.8, "Finish parsing.")
|
||||
else:
|
||||
callback(0.8, f"tika.parser got empty content from {filename}.")
|
||||
logging.warning(f"tika.parser got empty content from {filename}.")
|
||||
return []
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)")
|
||||
|
||||
st = timer()
|
||||
if section_images:
|
||||
# if all images are None, set section_images to None
|
||||
if all(image is None for image in section_images):
|
||||
section_images = None
|
||||
|
||||
if section_images:
|
||||
chunks, images = naive_merge_with_images(sections, section_images,
|
||||
int(parser_config.get(
|
||||
"chunk_token_num", 128)), parser_config.get(
|
||||
"delimiter", "\n!?。;!?"))
|
||||
if kwargs.get("section_only", False):
|
||||
return chunks
|
||||
|
||||
res.extend(tokenize_chunks_with_images(chunks, doc, is_english, images))
|
||||
else:
|
||||
chunks = naive_merge(
|
||||
sections, int(parser_config.get(
|
||||
"chunk_token_num", 128)), parser_config.get(
|
||||
"delimiter", "\n!?。;!?"))
|
||||
if kwargs.get("section_only", False):
|
||||
return chunks
|
||||
|
||||
res.extend(tokenize_chunks(chunks, doc, is_english, pdf_parser))
|
||||
|
||||
logging.info("naive_merge({}): {}".format(filename, timer() - st))
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
def dummy(prog=None, msg=""):
|
||||
pass
|
||||
|
||||
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
||||
Reference in New Issue
Block a user