将flask改成fastapi
This commit is contained in:
131
graphrag/light/graph_extractor.py
Normal file
131
graphrag/light/graph_extractor.py
Normal file
@@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2024 Microsoft Corporation.
|
||||
# Licensed under the MIT License
|
||||
"""
|
||||
Reference:
|
||||
- [graphrag](https://github.com/microsoft/graphrag)
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
import networkx as nx
|
||||
import trio
|
||||
|
||||
from graphrag.general.extractor import ENTITY_EXTRACTION_MAX_GLEANINGS, Extractor
|
||||
from graphrag.light.graph_prompt import PROMPTS
|
||||
from graphrag.utils import chat_limiter, pack_user_ass_to_openai_messages, split_string_by_multi_markers
|
||||
from rag.llm.chat_model import Base as CompletionLLM
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphExtractionResult:
|
||||
"""Unipartite graph extraction result class definition."""
|
||||
|
||||
output: nx.Graph
|
||||
source_docs: dict[Any, Any]
|
||||
|
||||
|
||||
class GraphExtractor(Extractor):
|
||||
_max_gleanings: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_invoker: CompletionLLM,
|
||||
language: str | None = "English",
|
||||
entity_types: list[str] | None = None,
|
||||
example_number: int = 2,
|
||||
max_gleanings: int | None = None,
|
||||
):
|
||||
super().__init__(llm_invoker, language, entity_types)
|
||||
"""Init method definition."""
|
||||
self._max_gleanings = max_gleanings if max_gleanings is not None else ENTITY_EXTRACTION_MAX_GLEANINGS
|
||||
self._example_number = example_number
|
||||
examples = "\n".join(PROMPTS["entity_extraction_examples"][: int(self._example_number)])
|
||||
|
||||
example_context_base = dict(
|
||||
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
||||
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
||||
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
||||
entity_types=",".join(self._entity_types),
|
||||
language=self._language,
|
||||
)
|
||||
# add example's format
|
||||
examples = examples.format(**example_context_base)
|
||||
|
||||
self._entity_extract_prompt = PROMPTS["entity_extraction"]
|
||||
self._context_base = dict(
|
||||
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
||||
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
||||
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
||||
entity_types=",".join(self._entity_types),
|
||||
examples=examples,
|
||||
language=self._language,
|
||||
)
|
||||
|
||||
self._continue_prompt = PROMPTS["entity_continue_extraction"].format(**self._context_base)
|
||||
self._if_loop_prompt = PROMPTS["entity_if_loop_extraction"]
|
||||
|
||||
self._left_token_count = llm_invoker.max_length - num_tokens_from_string(self._entity_extract_prompt.format(**self._context_base, input_text=""))
|
||||
self._left_token_count = max(llm_invoker.max_length * 0.6, self._left_token_count)
|
||||
|
||||
async def _process_single_content(self, chunk_key_dp: tuple[str, str], chunk_seq: int, num_chunks: int, out_results):
|
||||
token_count = 0
|
||||
chunk_key = chunk_key_dp[0]
|
||||
content = chunk_key_dp[1]
|
||||
hint_prompt = self._entity_extract_prompt.format(**self._context_base, input_text=content)
|
||||
|
||||
gen_conf = {}
|
||||
final_result = ""
|
||||
glean_result = ""
|
||||
if_loop_result = ""
|
||||
history = []
|
||||
logging.info(f"Start processing for {chunk_key}: {content[:25]}...")
|
||||
if self.callback:
|
||||
self.callback(msg=f"Start processing for {chunk_key}: {content[:25]}...")
|
||||
async with chat_limiter:
|
||||
final_result = await trio.to_thread.run_sync(self._chat, "", [{"role": "user", "content": hint_prompt}], gen_conf)
|
||||
token_count += num_tokens_from_string(hint_prompt + final_result)
|
||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result, self._continue_prompt)
|
||||
for now_glean_index in range(self._max_gleanings):
|
||||
async with chat_limiter:
|
||||
# glean_result = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, history, gen_conf))
|
||||
glean_result = await trio.to_thread.run_sync(self._chat, "", history, gen_conf)
|
||||
history.extend([{"role": "assistant", "content": glean_result}])
|
||||
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + hint_prompt + self._continue_prompt)
|
||||
final_result += glean_result
|
||||
if now_glean_index == self._max_gleanings - 1:
|
||||
break
|
||||
|
||||
history.extend([{"role": "user", "content": self._if_loop_prompt}])
|
||||
async with chat_limiter:
|
||||
if_loop_result = await trio.to_thread.run_sync(self._chat, "", history, gen_conf)
|
||||
token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + if_loop_result + self._if_loop_prompt)
|
||||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||||
if if_loop_result != "yes":
|
||||
break
|
||||
history.extend([{"role": "assistant", "content": if_loop_result}, {"role": "user", "content": self._continue_prompt}])
|
||||
|
||||
logging.info(f"Completed processing for {chunk_key}: {content[:25]}... after {now_glean_index} gleanings, {token_count} tokens.")
|
||||
if self.callback:
|
||||
self.callback(msg=f"Completed processing for {chunk_key}: {content[:25]}... after {now_glean_index} gleanings, {token_count} tokens.")
|
||||
records = split_string_by_multi_markers(
|
||||
final_result,
|
||||
[self._context_base["record_delimiter"], self._context_base["completion_delimiter"]],
|
||||
)
|
||||
rcds = []
|
||||
for record in records:
|
||||
record = re.search(r"\((.*)\)", record)
|
||||
if record is None:
|
||||
continue
|
||||
rcds.append(record.group(1))
|
||||
records = rcds
|
||||
maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, self._context_base["tuple_delimiter"])
|
||||
out_results.append((maybe_nodes, maybe_edges, token_count))
|
||||
if self.callback:
|
||||
self.callback(
|
||||
0.5 + 0.1 * len(out_results) / num_chunks,
|
||||
msg=f"Entities extraction of chunk {chunk_seq} {len(out_results)}/{num_chunks} done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {token_count} tokens.",
|
||||
)
|
||||
Reference in New Issue
Block a user