将flask改成fastapi

This commit is contained in:
2025-10-13 13:18:03 +08:00
commit 88db2539b0
476 changed files with 739741 additions and 0 deletions

18
agent/__init__.py Normal file
View File

@@ -0,0 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

515
agent/canvas.py Normal file
View File

@@ -0,0 +1,515 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import json
import logging
import re
import time
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from functools import partial
from typing import Any, Union, Tuple
from agent.component import component_class
from agent.component.base import ComponentBase
from api.db.services.file_service import FileService
from api.utils import get_uuid, hash_str2int
from rag.prompts.generator import chunks_format
from rag.utils.redis_conn import REDIS_CONN
class Graph:
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.components = {}
self.error = ""
self.dsl = json.loads(dsl)
self._tenant_id = tenant_id
self.task_id = task_id if task_id else get_uuid()
self.load()
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
param.update(cpn["obj"]["params"])
try:
param.check()
except Exception as e:
raise ValueError(self.get_component_name(k) + f": {e}")
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
self.path = self.dsl["path"]
def __str__(self):
self.dsl["path"] = self.path
self.dsl["task_id"] = self.task_id
dsl = {
"components": {}
}
for k in self.dsl.keys():
if k in ["components"]:
continue
dsl[k] = deepcopy(self.dsl[k])
for k, cpn in self.components.items():
if k not in dsl["components"]:
dsl["components"][k] = {}
for c in cpn.keys():
if c == "obj":
dsl["components"][k][c] = json.loads(str(cpn["obj"]))
continue
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self):
self.path = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
raise NotImplementedError()
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def get_tenant_id(self):
return self._tenant_id
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
super().__init__(dsl, tenant_id, task_id)
def load(self):
super().load()
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["history"] = self.history
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
return super().__str__()
def reset(self, mem=False):
super().reset()
if not mem:
self.history = []
self.retrieval = []
self.memory = []
for k in self.globals.keys():
if isinstance(self.globals[k], str):
self.globals[k] = ""
elif isinstance(self.globals[k], int):
self.globals[k] = 0
elif isinstance(self.globals[k], float):
self.globals[k] = 0
elif isinstance(self.globals[k], list):
self.globals[k] = []
elif isinstance(self.globals[k], dict):
self.globals[k] = {}
else:
self.globals[k] = None
def run(self, **kwargs):
st = time.perf_counter()
self.message_id = get_uuid()
created_at = int(time.time())
self.add_user_input(kwargs.get("query"))
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]:
if k == "files":
self.globals[f"sys.{k}"] = self.get_files(kwargs[k])
else:
self.globals[f"sys.{k}"] = kwargs[k]
if not self.globals["sys.conversation_turns"] :
self.globals["sys.conversation_turns"] = 0
self.globals["sys.conversation_turns"] += 1
def decorate(event, dt):
nonlocal created_at
return {
"event": event,
#"conversation_id": "f3cc152b-24b0-4258-a1a1-7d5e9fc8a115",
"message_id": self.message_id,
"created_at": created_at,
"task_id": self.task_id,
"data": dt
}
if not self.path or self.path[-1].lower().find("userfillup") < 0:
self.path.append("begin")
self.retrieval.append({"chunks": [], "doc_aggs": []})
yield decorate("workflow_started", {"inputs": kwargs.get("inputs")})
self.retrieval.append({"chunks": {}, "doc_aggs": {}})
def _run_batch(f, t):
with ThreadPoolExecutor(max_workers=5) as executor:
thr = []
for i in range(f, t):
cpn = self.get_component_obj(self.path[i])
if cpn.component_name.lower() in ["begin", "userfillup"]:
thr.append(executor.submit(cpn.invoke, inputs=kwargs.get("inputs", {})))
else:
thr.append(executor.submit(cpn.invoke, **cpn.get_input()))
for t in thr:
t.result()
def _node_finished(cpn_obj):
return decorate("node_finished",{
"inputs": cpn_obj.get_input_values(),
"outputs": cpn_obj.output(),
"component_id": cpn_obj._id,
"component_name": self.get_component_name(cpn_obj._id),
"component_type": self.get_component_type(cpn_obj._id),
"error": cpn_obj.error(),
"elapsed_time": time.perf_counter() - cpn_obj.output("_created_time"),
"created_at": cpn_obj.output("_created_time"),
})
self.error = ""
idx = len(self.path) - 1
partials = []
while idx < len(self.path):
to = len(self.path)
for i in range(idx, to):
yield decorate("node_started", {
"inputs": None, "created_at": int(time.time()),
"component_id": self.path[i],
"component_name": self.get_component_name(self.path[i]),
"component_type": self.get_component_type(self.path[i]),
"thoughts": self.get_component_thoughts(self.path[i])
})
_run_batch(idx, to)
# post processing of components invocation
for i in range(idx, to):
cpn = self.get_component(self.path[i])
cpn_obj = self.get_component_obj(self.path[i])
if cpn_obj.component_name.lower() == "message":
if isinstance(cpn_obj.output("content"), partial):
_m = ""
for m in cpn_obj.output("content")():
if not m:
continue
if m == "<think>":
yield decorate("message", {"content": "", "start_to_think": True})
elif m == "</think>":
yield decorate("message", {"content": "", "end_to_think": True})
else:
yield decorate("message", {"content": m})
_m += m
cpn_obj.set_output("content", _m)
cite = re.search(r"\[ID:[ 0-9]+\]", _m)
else:
yield decorate("message", {"content": cpn_obj.output("content")})
cite = re.search(r"\[ID:[ 0-9]+\]", cpn_obj.output("content"))
yield decorate("message_end", {"reference": self.get_reference() if cite else None})
while partials:
_cpn_obj = self.get_component_obj(partials[0])
if isinstance(_cpn_obj.output("content"), partial):
break
yield _node_finished(_cpn_obj)
partials.pop(0)
other_branch = False
if cpn_obj.error():
ex = cpn_obj.exception_handler()
if ex and ex["goto"]:
self.path.extend(ex["goto"])
other_branch = True
elif ex and ex["default_value"]:
yield decorate("message", {"content": ex["default_value"]})
yield decorate("message_end", {})
else:
self.error = cpn_obj.error()
if cpn_obj.component_name.lower() != "iteration":
if isinstance(cpn_obj.output("content"), partial):
if self.error:
cpn_obj.set_output("content", None)
yield _node_finished(cpn_obj)
else:
partials.append(self.path[i])
else:
yield _node_finished(cpn_obj)
def _append_path(cpn_id):
nonlocal other_branch
if other_branch:
return
if self.path[-1] == cpn_id:
return
self.path.append(cpn_id)
def _extend_path(cpn_ids):
nonlocal other_branch
if other_branch:
return
for cpn_id in cpn_ids:
_append_path(cpn_id)
if cpn_obj.component_name.lower() == "iterationitem" and cpn_obj.end():
iter = cpn_obj.get_parent()
yield _node_finished(iter)
_extend_path(self.get_component(cpn["parent_id"])["downstream"])
elif cpn_obj.component_name.lower() in ["categorize", "switch"]:
_extend_path(cpn_obj.output("_next"))
elif cpn_obj.component_name.lower() == "iteration":
_append_path(cpn_obj.get_start())
elif not cpn["downstream"] and cpn_obj.get_parent():
_append_path(cpn_obj.get_parent().get_start())
else:
_extend_path(cpn["downstream"])
if self.error:
logging.error(f"Runtime Error: {self.error}")
break
idx = to
if any([self.get_component_obj(c).component_name.lower() == "userfillup" for c in self.path[idx:]]):
path = [c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() == "userfillup"]
path.extend([c for c in self.path[idx:] if self.get_component(c)["obj"].component_name.lower() != "userfillup"])
another_inputs = {}
tips = ""
for c in path:
o = self.get_component_obj(c)
if o.component_name.lower() == "userfillup":
another_inputs.update(o.get_input_elements())
if o.get_param("enable_tips"):
tips = o.get_param("tips")
self.path = path
yield decorate("user_inputs", {"inputs": another_inputs, "tips": tips})
return
self.path = self.path[:idx]
if not self.error:
yield decorate("workflow_finished",
{
"inputs": kwargs.get("inputs"),
"outputs": self.get_component_obj(self.path[-1]).output(),
"elapsed_time": time.perf_counter() - st,
"created_at": st,
})
self.history.append(("assistant", self.get_component_obj(self.path[-1]).output()))
def is_reff(self, exp: str) -> bool:
exp = exp.strip("{").strip("}")
if exp.find("@") < 0:
return exp in self.globals
arr = exp.split("@")
if len(arr) != 2:
return False
if self.get_component(arr[0]) is None:
return False
return True
def get_history(self, window_size):
convs = []
if window_size <= 0:
return convs
for role, obj in self.history[window_size * -2:]:
if isinstance(obj, dict):
convs.append({"role": role, "content": obj.get("content", "")})
else:
convs.append({"role": role, "content": str(obj)})
return convs
def add_user_input(self, question):
self.history.append(("user", question))
def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue
def get_mode(self):
return self.components["begin"]["obj"]._param.mode
def set_global_param(self, **kwargs):
self.globals.update(kwargs)
def get_preset_param(self):
return self.components["begin"]["obj"]._param.inputs
def get_component_input_elements(self, cpnnm):
return self.components[cpnnm]["obj"].get_input_elements()
def get_files(self, files: Union[None, list[dict]]) -> list[str]:
if not files:
return []
def image_to_base64(file):
return "data:{};base64,{}".format(file["mime_type"],
base64.b64encode(FileService.get_blob(file["created_by"], file["id"])).decode("utf-8"))
exe = ThreadPoolExecutor(max_workers=5)
threads = []
for file in files:
if file["mime_type"].find("image") >=0:
threads.append(exe.submit(image_to_base64, file))
continue
threads.append(exe.submit(FileService.parse, file["name"], FileService.get_blob(file["created_by"], file["id"]), True, file["created_by"]))
return [th.result() for th in threads]
def tool_use_callback(self, agent_id: str, func_name: str, params: dict, result: Any, elapsed_time=None):
agent_ids = agent_id.split("-->")
agent_name = self.get_component_name(agent_ids[0])
path = agent_name if len(agent_ids) < 2 else agent_name+"-->"+"-->".join(agent_ids[1:])
try:
bin = REDIS_CONN.get(f"{self.task_id}-{self.message_id}-logs")
if bin:
obj = json.loads(bin.encode("utf-8"))
if obj[-1]["component_id"] == agent_ids[0]:
obj[-1]["trace"].append({"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time})
else:
obj.append({
"component_id": agent_ids[0],
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
})
else:
obj = [{
"component_id": agent_ids[0],
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
}]
REDIS_CONN.set_obj(f"{self.task_id}-{self.message_id}-logs", obj, 60*10)
except Exception as e:
logging.exception(e)
def add_reference(self, chunks: list[object], doc_infos: list[object]):
if not self.retrieval:
self.retrieval = [{"chunks": {}, "doc_aggs": {}}]
r = self.retrieval[-1]
for ck in chunks_format({"chunks": chunks}):
cid = hash_str2int(ck["id"], 500)
# cid = uuid.uuid5(uuid.NAMESPACE_DNS, ck["id"])
if cid not in r:
r["chunks"][cid] = ck
for doc in doc_infos:
if doc["doc_name"] not in r:
r["doc_aggs"][doc["doc_name"]] = doc
def get_reference(self):
if not self.retrieval:
return {"chunks": {}, "doc_aggs": {}}
return self.retrieval[-1]
def add_memory(self, user:str, assist:str, summ: str):
self.memory.append((user, assist, summ))
def get_memory(self) -> list[Tuple]:
return self.memory
def get_component_thoughts(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].thoughts()

View File

@@ -0,0 +1,58 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import importlib
import inspect
from types import ModuleType
from typing import Dict, Type
_package_path = os.path.dirname(__file__)
__all_classes: Dict[str, Type] = {}
def _import_submodules() -> None:
for filename in os.listdir(_package_path): # noqa: F821
if filename.startswith("__") or not filename.endswith(".py") or filename.startswith("base"):
continue
module_name = filename[:-3]
try:
module = importlib.import_module(f".{module_name}", package=__name__)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {module_name}: {str(e)}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if (inspect.isclass(obj) and
obj.__module__ == module.__name__ and not name.startswith("_")):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name):
for mdl in ["agent.component", "agent.tools", "rag.flow"]:
try:
return getattr(importlib.import_module(mdl), class_name)
except Exception:
pass
assert False, f"Can't import {class_name}"

View File

@@ -0,0 +1,352 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import re
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from functools import partial
from typing import Any
import json_repair
from timeit import default_timer as timer
from agent.tools.base import LLMToolPluginCallSession, ToolParamBase, ToolBase, ToolMeta
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from api.utils.api_utils import timeout
from rag.prompts.generator import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question, message_fit_in
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, mcp_tool_metadata_to_openai_tool
from agent.component.llm import LLMParam, LLM
class AgentParam(LLMParam, ToolParamBase):
"""
Define the Agent component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "agent",
"description": "This is an agent for a specific task.",
"parameters": {
"user_prompt": {
"type": "string",
"description": "This is the order you need to send to the agent.",
"default": "",
"required": True
},
"reasoning": {
"type": "string",
"description": (
"Supervisor's reasoning for choosing the this agent. "
"Explain why this agent is being invoked and what is expected of it."
),
"required": True
},
"context": {
"type": "string",
"description": (
"All relevant background information, prior facts, decisions, "
"and state needed by the agent to solve the current query. "
"Should be as detailed and self-contained as possible."
),
"required": True
},
}
}
super().__init__()
self.function_name = "agent"
self.tools = []
self.mcp = []
self.max_rounds = 5
self.description = ""
class Agent(LLM, ToolBase):
component_name = "Agent"
def __init__(self, canvas, id, param: LLMParam):
LLM.__init__(self, canvas, id, param)
self.tools = {}
for cpn in self._param.tools:
cpn = self._load_tool_obj(cpn)
self.tools[cpn.get_meta()["function"]["name"]] = cpn
self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), TenantLLMService.llm_id2llm_type(self._param.llm_id), self._param.llm_id,
max_retries=self._param.max_retries,
retry_interval=self._param.delay_after_error,
max_rounds=self._param.max_rounds,
verbose_tool_use=True
)
self.tool_meta = [v.get_meta() for _,v in self.tools.items()]
for mcp in self._param.mcp:
_, mcp_server = MCPServerService.get_by_id(mcp["mcp_id"])
tool_call_session = MCPToolCallSession(mcp_server, mcp_server.variables)
for tnm, meta in mcp["tools"].items():
self.tool_meta.append(mcp_tool_metadata_to_openai_tool(meta))
self.tools[tnm] = tool_call_session
self.callback = partial(self._canvas.tool_use_callback, id)
self.toolcall_session = LLMToolPluginCallSession(self.tools, self.callback)
#self.chat_mdl.bind_tools(self.toolcall_session, self.tool_metas)
def _load_tool_obj(self, cpn: dict) -> object:
from agent.component import component_class
param = component_class(cpn["component_name"] + "Param")()
param.update(cpn["params"])
try:
param.check()
except Exception as e:
self.set_output("_ERROR", cpn["component_name"] + f" configuration error: {e}")
raise
cpn_id = f"{self._id}-->" + cpn.get("name", "").replace(" ", "_")
return component_class(cpn["component_name"])(self._canvas, cpn_id, param)
def get_meta(self) -> dict[str, Any]:
self._param.function_name= self._id.split("-->")[-1]
m = super().get_meta()
if hasattr(self._param, "user_prompt") and self._param.user_prompt:
m["function"]["parameters"]["properties"]["user_prompt"] = self._param.user_prompt
return m
def get_input_form(self) -> dict[str, dict]:
res = {}
for k, v in self.get_input_elements().items():
res[k] = {
"type": "line",
"name": v["name"]
}
for cpn in self._param.tools:
if not isinstance(cpn, LLM):
continue
res.update(cpn.get_input_form())
return res
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60)))
def _invoke(self, **kwargs):
if kwargs.get("user_prompt"):
usr_pmt = ""
if kwargs.get("reasoning"):
usr_pmt += "\nREASONING:\n{}\n".format(kwargs["reasoning"])
if kwargs.get("context"):
usr_pmt += "\nCONTEXT:\n{}\n".format(kwargs["context"])
if usr_pmt:
usr_pmt += "\nQUERY:\n{}\n".format(str(kwargs["user_prompt"]))
else:
usr_pmt = str(kwargs["user_prompt"])
self._param.prompts = [{"role": "user", "content": usr_pmt}]
if not self.tools:
return LLM._invoke(self, **kwargs)
prompt, msg, user_defined_prompt = self._prepare_prompt_variables()
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
ans += delta_ans
if ans.find("**ERROR**") >= 0:
logging.error(f"Agent._chat got error. response: {ans}")
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
else:
self.set_output("_ERROR", ans)
return
self.set_output("content", ans)
if use_tools:
self.set_output("use_tools", use_tools)
return ans
def stream_output_with_tools(self, prompt, msg, user_defined_prompt={}):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
yield self.get_exception_default_value()
else:
self.set_output("_ERROR", delta_ans)
answer_without_toolcall += delta_ans
yield delta_ans
self.set_output("content", answer_without_toolcall)
if use_tools:
self.set_output("use_tools", use_tools)
def _gen_citations(self, text):
retrievals = self._canvas.get_reference()
retrievals = {"chunks": list(retrievals["chunks"].values()), "doc_aggs": list(retrievals["doc_aggs"].values())}
formated_refer = kb_prompt(retrievals, self.chat_mdl.max_length, True)
for delta_ans in self._generate_streamly([{"role": "system", "content": citation_plus("\n\n".join(formated_refer))},
{"role": "user", "content": text}
]):
yield delta_ans
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools, user_defined_prompt={}):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
last_calling = ""
if len(hist) > 3:
st = timer()
user_request = full_question(messages=history, chat_mdl=self.chat_mdl)
self.callback("Multi-turn conversation optimization", {}, user_request, elapsed_time=timer()-st)
else:
user_request = history[-1]["content"]
def use_tool(name, args):
nonlocal hist, use_tools, token_count,last_calling,user_request
logging.info(f"{last_calling=} == {name=}")
# Summarize of function calling
#if all([
# isinstance(self.toolcall_session.get_tool_obj(name), Agent),
# last_calling,
# last_calling != name
#]):
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]),user_defined_prompt))
last_calling = name
tool_response = self.toolcall_session.tool_call(name, args)
use_tools.append({
"name": name,
"arguments": args,
"results": tool_response
})
# self.callback("add_memory", {}, "...")
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response), user_defined_prompt)
return name, tool_response
def complete():
nonlocal hist
need2cite = self._param.cite and self._canvas.get_reference()["chunks"] and self._id.find("-->") < 0
cited = False
if hist[0]["role"] == "system" and need2cite:
if len(hist) < 7:
hist[0]["content"] += citation_prompt()
cited = True
yield "", token_count
_hist = hist
if len(hist) > 12:
_hist = [hist[0], hist[1], *hist[-10:]]
entire_txt = ""
for delta_ans in self._generate_streamly(_hist):
if not need2cite or cited:
yield delta_ans, 0
entire_txt += delta_ans
if not need2cite or cited:
return
st = timer()
txt = ""
for delta_ans in self._gen_citations(entire_txt):
yield delta_ans, 0
txt += delta_ans
self.callback("gen_citations", {}, txt, elapsed_time=timer()-st)
def append_user_content(hist, content):
if hist[-1]["role"] == "user":
hist[-1]["content"] += content
else:
hist.append({"role": "user", "content": content})
st = timer()
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
# self.callback("next_step", {}, str(response)[:256]+"...")
token_count += tk
hist.append({"role": "assistant", "content": response})
try:
functions = json_repair.loads(re.sub(r"```.*", "", response))
if not isinstance(functions, list):
raise TypeError(f"List should be returned, but `{functions}`")
for f in functions:
if not isinstance(f, dict):
raise TypeError(f"An object type should be returned, but `{f}`")
with ThreadPoolExecutor(max_workers=5) as executor:
thr = []
for func in functions:
name = func["name"]
args = func["arguments"]
if name == COMPLETE_TASK:
append_user_content(hist, f"Respond with a formal answer. FORGET(DO NOT mention) about `{COMPLETE_TASK}`. The language for the response MUST be as the same as the first user request.\n")
for txt, tkcnt in complete():
yield txt, tkcnt
return
thr.append(executor.submit(use_tool, name, args))
st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr], user_defined_prompt)
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM ReAct response: {e}")
e = f"\nTool call error, please correct the input parameter of response format and call it again.\n *** Exception ***\n{e}"
append_user_content(hist, str(e))
logging.warning( f"Exceed max rounds: {self._param.max_rounds}")
final_instruction = f"""
{user_request}
IMPORTANT: You have reached the conversation limit. Based on ALL the information and research you have gathered so far, please provide a DIRECT and COMPREHENSIVE final answer to the original request.
Instructions:
1. SYNTHESIZE all information collected during this conversation
2. Provide a COMPLETE response using existing data - do not suggest additional research
3. Structure your response as a FINAL DELIVERABLE, not a plan
4. If information is incomplete, state what you found and provide the best analysis possible with available data
5. DO NOT mention conversation limits or suggest further steps
6. Focus on delivering VALUE with the information already gathered
Respond immediately with your final comprehensive answer.
"""
append_user_content(hist, final_instruction)
for txt, tkcnt in complete():
yield txt, tkcnt
def get_useful_memory(self, goal: str, sub_goal:str, topn=3, user_defined_prompt:dict={}) -> str:
# self.callback("get_useful_memory", {"topn": 3}, "...")
mems = self._canvas.get_memory()
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems], user_defined_prompt)
try:
rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn]
mems = [mems[r] for r in rank]
return "\n\n".join([f"User: {u}\nAgent: {a}" for u, a,_ in mems])
except Exception as e:
logging.exception(e)
return "Error occurred."
def reset(self):
for k, cpn in self.tools.items():
cpn.reset()

564
agent/component/base.py Normal file
View File

@@ -0,0 +1,564 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import time
from abc import ABC
import builtins
import json
import os
import logging
from typing import Any, List, Union
import pandas as pd
import trio
from agent import settings
from api.utils.api_utils import timeout
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
_DEPRECATED_PARAMS = "_deprecated_params"
_USER_FEEDED_PARAMS = "_user_feeded_params"
_IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.message_history_window_size = 13
self.inputs = {}
self.outputs = {}
self.description = ""
self.max_retries = 0
self.delay_after_error = 2.0
self.exception_method = None
self.exception_default_value = None
self.exception_goto = None
self.debug_inputs = {}
def set_name(self, name: str):
self._name = name
return self
def check(self):
raise NotImplementedError("Parameter Object should be checked.")
@classmethod
def _get_or_init_deprecated_params_set(cls):
if not hasattr(cls, _DEPRECATED_PARAMS):
setattr(cls, _DEPRECATED_PARAMS, set())
return getattr(cls, _DEPRECATED_PARAMS)
def _get_or_init_feeded_deprecated_params_set(self, conf=None):
if not hasattr(self, _FEEDED_DEPRECATED_PARAMS):
if conf is None:
setattr(self, _FEEDED_DEPRECATED_PARAMS, set())
else:
setattr(
self,
_FEEDED_DEPRECATED_PARAMS,
set(conf[_FEEDED_DEPRECATED_PARAMS]),
)
return getattr(self, _FEEDED_DEPRECATED_PARAMS)
def _get_or_init_user_feeded_params_set(self, conf=None):
if not hasattr(self, _USER_FEEDED_PARAMS):
if conf is None:
setattr(self, _USER_FEEDED_PARAMS, set())
else:
setattr(self, _USER_FEEDED_PARAMS, set(conf[_USER_FEEDED_PARAMS]))
return getattr(self, _USER_FEEDED_PARAMS)
def get_user_feeded(self):
return self._get_or_init_user_feeded_params_set()
def get_feeded_deprecated_params(self):
return self._get_or_init_feeded_deprecated_params_set()
@property
def _deprecated_params_set(self):
return {name: True for name in self.get_feeded_deprecated_params()}
def __str__(self):
return json.dumps(self.as_dict(), ensure_ascii=False)
def as_dict(self):
def _recursive_convert_obj_to_dict(obj):
ret_dict = {}
if isinstance(obj, dict):
for k,v in obj.items():
if isinstance(v, dict) or (v and type(v).__name__ not in dir(builtins)):
ret_dict[k] = _recursive_convert_obj_to_dict(v)
else:
ret_dict[k] = v
return ret_dict
for attr_name in list(obj.__dict__):
if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
continue
# get attr
attr = getattr(obj, attr_name)
if isinstance(attr, pd.DataFrame):
ret_dict[attr_name] = attr.to_dict()
continue
if isinstance(attr, dict) or (attr and type(attr).__name__ not in dir(builtins)):
ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
else:
ret_dict[attr_name] = attr
return ret_dict
return _recursive_convert_obj_to_dict(self)
def update(self, conf, allow_redundant=False):
update_from_raw_conf = conf.get(_IS_RAW_CONF, True)
if update_from_raw_conf:
deprecated_params_set = self._get_or_init_deprecated_params_set()
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set()
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set()
setattr(self, _IS_RAW_CONF, False)
else:
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set(conf)
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set(conf)
def _recursive_update_param(param, config, depth, prefix):
if depth > settings.PARAM_MAXDEPTH:
raise ValueError("Param define nesting too deep!!!, can not parse it")
inst_variables = param.__dict__
redundant_attrs = []
for config_key, config_value in config.items():
# redundant attr
if config_key not in inst_variables:
if not update_from_raw_conf and config_key.startswith("_"):
setattr(param, config_key, config_value)
else:
setattr(param, config_key, config_value)
# redundant_attrs.append(config_key)
continue
full_config_key = f"{prefix}{config_key}"
if update_from_raw_conf:
# add user feeded params
user_feeded_params_set.add(full_config_key)
# update user feeded deprecated param set
if full_config_key in deprecated_params_set:
feeded_deprecated_params_set.add(full_config_key)
# supported attr
attr = getattr(param, config_key)
if type(attr).__name__ in dir(builtins) or attr is None:
setattr(param, config_key, config_value)
else:
# recursive set obj attr
sub_params = _recursive_update_param(
attr, config_value, depth + 1, prefix=f"{prefix}{config_key}."
)
setattr(param, config_key, sub_params)
if not allow_redundant and redundant_attrs:
raise ValueError(
f"cpn `{getattr(self, '_name', type(self))}` has redundant parameters: `{[redundant_attrs]}`"
)
return param
return _recursive_update_param(param=self, config=conf, depth=0, prefix="")
def extract_not_builtin(self):
def _get_not_builtin_types(obj):
ret_dict = {}
for variable in obj.__dict__:
attr = getattr(obj, variable)
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[variable] = _get_not_builtin_types(attr)
return ret_dict
return _get_not_builtin_types(self)
def validate(self):
self.builtin_types = dir(builtins)
self.func = {
"ge": self._greater_equal_than,
"le": self._less_equal_than,
"in": self._in,
"not_in": self._not_in,
"range": self._range,
}
home_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
param_validation_path_prefix = home_dir + "/param_validation/"
param_name = type(self).__name__
param_validation_path = "/".join(
[param_validation_path_prefix, param_name + ".json"]
)
validation_json = None
try:
with open(param_validation_path, "r") as fin:
validation_json = json.loads(fin.read())
except BaseException:
return
self._validate_param(self, validation_json)
def _validate_param(self, param_obj, validation_json):
default_section = type(param_obj).__name__
var_list = param_obj.__dict__
for variable in var_list:
attr = getattr(param_obj, variable)
if type(attr).__name__ in self.builtin_types or attr is None:
if variable not in validation_json:
continue
validation_dict = validation_json[default_section][variable]
value = getattr(param_obj, variable)
value_legal = False
for op_type in validation_dict:
if self.func[op_type](value, validation_dict[op_type]):
value_legal = True
break
if not value_legal:
raise ValueError(
"Please check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
elif variable in validation_json:
self._validate_param(attr, validation_json)
@staticmethod
def check_string(param, descr):
if type(param).__name__ not in ["str"]:
raise ValueError(
descr + " {} not supported, should be string type".format(param)
)
@staticmethod
def check_empty(param, descr):
if not param:
raise ValueError(
descr + " does not support empty value."
)
@staticmethod
def check_positive_integer(param, descr):
if type(param).__name__ not in ["int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive integer".format(param)
)
@staticmethod
def check_positive_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive numeric".format(param)
)
@staticmethod
def check_nonnegative_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param < 0:
raise ValueError(
descr
+ " {} not supported, should be non-negative numeric".format(param)
)
@staticmethod
def check_decimal_float(param, descr):
if type(param).__name__ not in ["float", "int"] or param < 0 or param > 1:
raise ValueError(
descr
+ " {} not supported, should be a float number in range [0, 1]".format(
param
)
)
@staticmethod
def check_boolean(param, descr):
if type(param).__name__ != "bool":
raise ValueError(
descr + " {} not supported, should be bool type".format(param)
)
@staticmethod
def check_open_unit_interval(param, descr):
if type(param).__name__ not in ["float"] or param <= 0 or param >= 1:
raise ValueError(
descr + " should be a numeric number between 0 and 1 exclusively"
)
@staticmethod
def check_valid_value(param, descr, valid_values):
if param not in valid_values:
raise ValueError(
descr
+ " {} is not supported, it should be in {}".format(param, valid_values)
)
@staticmethod
def check_defined_type(param, descr, types):
if type(param).__name__ not in types:
raise ValueError(
descr + " {} not supported, should be one of {}".format(param, types)
)
@staticmethod
def check_and_change_lower(param, valid_list, descr=""):
if type(param).__name__ != "str":
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
lower_param = param.lower()
if lower_param in valid_list:
return lower_param
else:
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
@staticmethod
def _greater_equal_than(value, limit):
return value >= limit - settings.FLOAT_ZERO
@staticmethod
def _less_equal_than(value, limit):
return value <= limit + settings.FLOAT_ZERO
@staticmethod
def _range(value, ranges):
in_range = False
for left_limit, right_limit in ranges:
if (
left_limit - settings.FLOAT_ZERO
<= value
<= right_limit + settings.FLOAT_ZERO
):
in_range = True
break
return in_range
@staticmethod
def _in(value, right_value_list):
return value in right_value_list
@staticmethod
def _not_in(value, wrong_value_list):
return value not in wrong_value_list
def _warn_deprecated_param(self, param_name, descr):
if self._deprecated_params_set.get(param_name):
logging.warning(
f"{descr} {param_name} is deprecated and ignored in this version."
)
def _warn_to_deprecate_param(self, param_name, descr, new_param):
if self._deprecated_params_set.get(param_name):
logging.warning(
f"{descr} {param_name} will be deprecated in future release; "
f"please use {new_param} instead."
)
return True
return False
class ComponentBase(ABC):
component_name: str
thread_limiter = trio.CapacityLimiter(int(os.environ.get('MAX_CONCURRENT_CHATS', 10)))
variable_ref_patt = r"\{* *\{([a-zA-Z:0-9]+@[A-Za-z:0-9_.-]+|sys\.[a-z_]+)\} *\}*"
def __str__(self):
"""
{
"component_name": "Begin",
"params": {}
}
"""
return """{{
"component_name": "{}",
"params": {}
}}""".format(self.component_name,
self._param
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Graph # Local import to avoid cyclic dependency
assert isinstance(canvas, Graph), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
self._param.check()
def invoke(self, **kwargs) -> dict[str, Any]:
self.set_output("_created_time", time.perf_counter())
try:
self._invoke(**kwargs)
except Exception as e:
if self.get_exception_default_value():
self.set_exception_default_value()
else:
self.set_output("_ERROR", str(e))
logging.exception(e)
self._param.debug_inputs = {}
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
raise NotImplementedError()
def output(self, var_nm: str=None) -> Union[dict[str, Any], Any]:
if var_nm:
return self._param.outputs.get(var_nm, {}).get("value", "")
return {k: o.get("value") for k,o in self._param.outputs.items()}
def set_output(self, key: str, value: Any):
if key not in self._param.outputs:
self._param.outputs[key] = {"value": None, "type": str(type(value))}
self._param.outputs[key]["value"] = value
def error(self):
return self._param.outputs.get("_ERROR", {}).get("value")
def reset(self, only_output=False):
for k in self._param.outputs.keys():
self._param.outputs[k]["value"] = None
if only_output:
return
for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None
self._param.debug_inputs = {}
def get_input(self, key: str=None) -> Union[Any, dict[str, Any]]:
if key:
return self._param.inputs.get(key, {}).get("value")
res = {}
for var, o in self.get_input_elements().items():
v = self.get_param(var)
if v is None:
continue
if isinstance(v, str) and self._canvas.is_reff(v):
self.set_input_value(var, self._canvas.get_variable_value(v))
else:
self.set_input_value(var, v)
res[var] = self.get_input_value(var)
return res
def get_input_values(self) -> Union[Any, dict[str, Any]]:
if self._param.debug_inputs:
return self._param.debug_inputs
return {var: self.get_input_value(var) for var, o in self.get_input_elements().items()}
def get_input_elements_from_text(self, txt: str) -> dict[str, dict[str, str]]:
res = {}
for r in re.finditer(self.variable_ref_patt, txt, flags=re.IGNORECASE|re.DOTALL):
exp = r.group(1)
cpn_id, var_nm = exp.split("@") if exp.find("@")>0 else ("", exp)
res[exp] = {
"name": (self._canvas.get_component_name(cpn_id) +f"@{var_nm}") if cpn_id else exp,
"value": self._canvas.get_variable_value(exp),
"_retrival": self._canvas.get_variable_value(f"{cpn_id}@_references") if cpn_id else None,
"_cpn_id": cpn_id
}
return res
def get_input_elements(self) -> dict[str, Any]:
return self._param.inputs
def get_input_form(self) -> dict[str, dict]:
return self._param.get_input_form()
def set_input_value(self, key: str, value: Any) -> None:
if key not in self._param.inputs:
self._param.inputs[key] = {"value": None}
self._param.inputs[key]["value"] = value
def get_input_value(self, key: str) -> Any:
if key not in self._param.inputs:
return None
return self._param.inputs[key].get("value")
def get_component_name(self, cpn_id) -> str:
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()
def get_param(self, name):
if hasattr(self._param, name):
return getattr(self._param, name)
def debug(self, **kwargs):
return self._invoke(**kwargs)
def get_parent(self) -> Union[object, None]:
pid = self._canvas.get_component(self._id).get("parent_id")
if not pid:
return
return self._canvas.get_component(pid)["obj"]
def get_upstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms
def get_downstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['downstream']
return cpn_nms
@staticmethod
def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items():
def repl(_match, val=v):
return str(val) if val is not None else ""
content = re.sub(
r"\{%s\}" % re.escape(n),
repl,
content
)
return content
def exception_handler(self):
if not self._param.exception_method:
return
return {
"goto": self._param.exception_goto,
"default_value": self._param.exception_default_value
}
def get_exception_default_value(self):
if self._param.exception_method != "comment":
return ""
return self._param.exception_default_value
def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value())
def thoughts(self) -> str:
raise NotImplementedError()

52
agent/component/begin.py Normal file
View File

@@ -0,0 +1,52 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agent.component.fillup import UserFillUpParam, UserFillUp
class BeginParam(UserFillUpParam):
"""
Define the Begin component parameters.
"""
def __init__(self):
super().__init__()
self.mode = "conversational"
self.prologue = "Hi! I'm your smart assistant. What can I do for you?"
def check(self):
self.check_valid_value(self.mode, "The 'mode' should be either `conversational` or `task`", ["conversational", "task"])
def get_input_form(self) -> dict[str, dict]:
return getattr(self, "inputs")
class Begin(UserFillUp):
component_name = "Begin"
def _invoke(self, **kwargs):
for k, v in kwargs.get("inputs", {}).items():
if isinstance(v, dict) and v.get("type", "").lower().find("file") >=0:
if v.get("optional") and v.get("value", None) is None:
v = None
else:
v = self._canvas.get_files([v["value"]])
else:
v = v.get("value")
self.set_output(k, v)
self.set_input_value(k, v)
def thoughts(self) -> str:
return ""

View File

@@ -0,0 +1,137 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import re
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component.llm import LLMParam, LLM
from api.utils.api_utils import timeout
from rag.llm.chat_model import ERROR_PREFIX
class CategorizeParam(LLMParam):
"""
Define the categorize component parameters.
"""
def __init__(self):
super().__init__()
self.category_description = {}
self.query = "sys.query"
self.message_history_window_size = 1
self.update_prompt()
def check(self):
self.check_positive_integer(self.message_history_window_size, "[Categorize] Message window size > 0")
self.check_empty(self.category_description, "[Categorize] Category examples")
for k, v in self.category_description.items():
if not k:
raise ValueError("[Categorize] Category name can not be empty!")
if not v.get("to"):
raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"type": "line",
"name": "Query"
}
}
def update_prompt(self):
cate_lines = []
for c, desc in self.category_description.items():
for line in desc.get("examples", []):
if not line:
continue
cate_lines.append("USER: \"" + re.sub(r"\n", " ", line, flags=re.DOTALL) + "\""+c)
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"\n------\nCategory: {}\nDescription: {}".format(c, desc["description"]))
self.sys_prompt = """
You are an advanced classification system that categorizes user questions into specific types. Analyze the input question and classify it into ONE of the following categories:
{}
Here's description of each category:
- {}
---- Instructions ----
- Consider both explicit mentions and implied context
- Prioritize the most specific applicable category
- Return only the category name without explanations
- Use "Other" only when no other category fits
""".format(
"\n - ".join(list(self.category_description.keys())),
"\n".join(descriptions)
)
if cate_lines:
self.sys_prompt += """
---- Examples ----
{}
""".format("\n".join(cate_lines))
class Categorize(LLM, ABC):
component_name = "Categorize"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
msg = self._canvas.get_history(self._param.message_history_window_size)
if not msg:
msg = [{"role": "user", "content": ""}]
if kwargs.get("sys.query"):
msg[-1]["content"] = kwargs["sys.query"]
self.set_input_value("sys.query", kwargs["sys.query"])
else:
msg[-1]["content"] = self._canvas.get_variable_value(self._param.query)
self.set_input_value(self._param.query, msg[-1]["content"])
self._param.update_prompt()
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
user_prompt = """
---- Real Data ----
{}
""".format(" | ".join(["{}: \"{}\"".format(c["role"].upper(), re.sub(r"\n", "", c["content"], flags=re.DOTALL)) for c in msg]))
ans = chat_mdl.chat(self._param.sys_prompt, [{"role": "user", "content": user_prompt}], self._param.gen_conf())
logging.info(f"input: {user_prompt}, answer: {str(ans)}")
if ERROR_PREFIX in ans:
raise Exception(ans)
# Count the number of times each category appears in the answer.
category_counts = {}
for c in self._param.category_description.keys():
count = ans.lower().count(c.lower())
category_counts[c] = count
cpn_ids = list(self._param.category_description.items())[-1][1]["to"]
max_category = list(self._param.category_description.keys())[0]
if any(category_counts.values()):
max_category = max(category_counts.items(), key=lambda x: x[1])[0]
cpn_ids = self._param.category_description[max_category]["to"]
self.set_output("category_name", max_category)
self.set_output("_next", cpn_ids)
def thoughts(self) -> str:
return "Which should it falls into {}? ...".format(",".join([f"`{c}`" for c, _ in self._param.category_description.items()]))

40
agent/component/fillup.py Normal file
View File

@@ -0,0 +1,40 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agent.component.base import ComponentBase, ComponentParamBase
class UserFillUpParam(ComponentParamBase):
def __init__(self):
super().__init__()
self.enable_tips = True
self.tips = "Please fill up the form"
def check(self) -> bool:
return True
class UserFillUp(ComponentBase):
component_name = "UserFillUp"
def _invoke(self, **kwargs):
for k, v in kwargs.get("inputs", {}).items():
self.set_output(k, v)
def thoughts(self) -> str:
return "Waiting for your input..."

135
agent/component/invoke.py Normal file
View File

@@ -0,0 +1,135 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
import re
import time
from abc import ABC
import requests
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from deepdoc.parser import HtmlParser
class InvokeParam(ComponentParamBase):
"""
Define the Crawler component parameters.
"""
def __init__(self):
super().__init__()
self.proxy = None
self.headers = ""
self.method = "get"
self.variables = []
self.url = ""
self.timeout = 60
self.clean_html = False
self.datatype = "json" # New parameter to determine data posting type
def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ["get", "post", "put"])
self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ["json", "formdata"]) # Check for valid datapost value
class Invoke(ComponentBase, ABC):
component_name = "Invoke"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
def _invoke(self, **kwargs):
args = {}
for para in self._param.variables:
if para.get("value"):
args[para["key"]] = para["value"]
else:
args[para["key"]] = self._canvas.get_variable_value(para["ref"])
url = self._param.url.strip()
def replace_variable(match):
var_name = match.group(1)
try:
value = self._canvas.get_variable_value(var_name)
return str(value or "")
except Exception:
return ""
# {base_url} or {component_id@variable_name}
url = re.sub(r"\{([a-zA-Z_][a-zA-Z0-9_.@-]*)\}", replace_variable, url)
if url.find("http") != 0:
url = "http://" + url
method = self._param.method.lower()
headers = {}
if self._param.headers:
headers = json.loads(self._param.headers)
proxies = None
if re.sub(r"https?:?/?/?", "", self._param.proxy):
proxies = {"http": self._param.proxy, "https": self._param.proxy}
last_e = ""
for _ in range(self._param.max_retries + 1):
try:
if method == "get":
response = requests.get(url=url, params=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
self.set_output("result", "\n".join(sections))
else:
self.set_output("result", response.text)
if method == "put":
if self._param.datatype.lower() == "json":
response = requests.put(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
else:
response = requests.put(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
sections = HtmlParser()(None, response.content)
self.set_output("result", "\n".join(sections))
else:
self.set_output("result", response.text)
if method == "post":
if self._param.datatype.lower() == "json":
response = requests.post(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
else:
response = requests.post(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
self.set_output("result", "\n".join(sections))
else:
self.set_output("result", response.text)
return self.output("result")
except Exception as e:
last_e = e
logging.exception(f"Http request error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"Http request error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Waiting for the server respond..."

View File

@@ -0,0 +1,60 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class IterationParam(ComponentParamBase):
"""
Define the Iteration component parameters.
"""
def __init__(self):
super().__init__()
self.items_ref = ""
def get_input_form(self) -> dict[str, dict]:
return {
"items": {
"type": "json",
"name": "Items"
}
}
def check(self):
return True
class Iteration(ComponentBase, ABC):
component_name = "Iteration"
def get_start(self):
for cid in self._canvas.components.keys():
if self._canvas.get_component(cid)["obj"].component_name.lower() != "iterationitem":
continue
if self._canvas.get_component(cid)["parent_id"] == self._id:
return cid
def _invoke(self, **kwargs):
arr = self._canvas.get_variable_value(self._param.items_ref)
if not isinstance(arr, list):
self.set_output("_ERROR", self._param.items_ref + " must be an array, but its type is "+str(type(arr)))
def thoughts(self) -> str:
return "Need to process {} items.".format(len(self._canvas.get_variable_value(self._param.items_ref)))

View File

@@ -0,0 +1,83 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class IterationItemParam(ComponentParamBase):
"""
Define the IterationItem component parameters.
"""
def check(self):
return True
class IterationItem(ComponentBase, ABC):
component_name = "IterationItem"
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
self._idx = 0
def _invoke(self, **kwargs):
parent = self.get_parent()
arr = self._canvas.get_variable_value(parent._param.items_ref)
if not isinstance(arr, list):
self._idx = -1
raise Exception(parent._param.items_ref + " must be an array, but its type is "+str(type(arr)))
if self._idx > 0:
self.output_collation()
if self._idx >= len(arr):
self._idx = -1
return
self.set_output("item", arr[self._idx])
self.set_output("index", self._idx)
self._idx += 1
def output_collation(self):
pid = self.get_parent()._id
for cid in self._canvas.components.keys():
obj = self._canvas.get_component_obj(cid)
p = obj.get_parent()
if not p:
continue
if p._id != pid:
continue
if p.component_name.lower() in ["categorize", "message", "switch", "userfillup", "interationitem"]:
continue
for k, o in p._param.outputs.items():
if "ref" not in o:
continue
_cid, var = o["ref"].split("@")
if _cid != cid:
continue
res = p.output(k)
if not res:
res = []
res.append(obj.output(var))
p.set_output(k, res)
def end(self):
return self._idx == -1
def thoughts(self) -> str:
return "Next turn..."

286
agent/component/llm.py Normal file
View File

@@ -0,0 +1,286 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
import re
from copy import deepcopy
from typing import Any, Generator
import json_repair
from functools import partial
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from rag.prompts.generator import tool_call_summary, message_fit_in, citation_prompt
class LLMParam(ComponentParamBase):
"""
Define the LLM component parameters.
"""
def __init__(self):
super().__init__()
self.llm_id = ""
self.sys_prompt = ""
self.prompts = [{"role": "user", "content": "{sys.query}"}]
self.max_tokens = 0
self.temperature = 0
self.top_p = 0
self.presence_penalty = 0
self.frequency_penalty = 0
self.output_structure = None
self.cite = True
self.visual_files_var = None
def check(self):
self.check_decimal_float(float(self.temperature), "[Agent] Temperature")
self.check_decimal_float(float(self.presence_penalty), "[Agent] Presence penalty")
self.check_decimal_float(float(self.frequency_penalty), "[Agent] Frequency penalty")
self.check_nonnegative_number(int(self.max_tokens), "[Agent] Max tokens")
self.check_decimal_float(float(self.top_p), "[Agent] Top P")
self.check_empty(self.llm_id, "[Agent] LLM")
self.check_empty(self.sys_prompt, "[Agent] System prompt")
self.check_empty(self.prompts, "[Agent] User prompt")
def gen_conf(self):
conf = {}
def get_attr(nm):
try:
return getattr(self, nm)
except Exception:
pass
if int(self.max_tokens) > 0 and get_attr("maxTokensEnabled"):
conf["max_tokens"] = int(self.max_tokens)
if float(self.temperature) > 0 and get_attr("temperatureEnabled"):
conf["temperature"] = float(self.temperature)
if float(self.top_p) > 0 and get_attr("topPEnabled"):
conf["top_p"] = float(self.top_p)
if float(self.presence_penalty) > 0 and get_attr("presencePenaltyEnabled"):
conf["presence_penalty"] = float(self.presence_penalty)
if float(self.frequency_penalty) > 0 and get_attr("frequencyPenaltyEnabled"):
conf["frequency_penalty"] = float(self.frequency_penalty)
return conf
class LLM(ComponentBase):
component_name = "LLM"
def __init__(self, canvas, component_id, param: ComponentParamBase):
super().__init__(canvas, component_id, param)
self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), TenantLLMService.llm_id2llm_type(self._param.llm_id),
self._param.llm_id, max_retries=self._param.max_retries,
retry_interval=self._param.delay_after_error
)
self.imgs = []
def get_input_form(self) -> dict[str, dict]:
res = {}
for k, v in self.get_input_elements().items():
res[k] = {
"type": "line",
"name": v["name"]
}
return res
def get_input_elements(self) -> dict[str, Any]:
res = self.get_input_elements_from_text(self._param.sys_prompt)
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for prompt in self._param.prompts:
d = self.get_input_elements_from_text(prompt["content"])
res.update(d)
return res
def set_debug_inputs(self, inputs: dict[str, dict]):
self._param.debug_inputs = inputs
def add2system_prompt(self, txt):
self._param.sys_prompt += txt
def _sys_prompt_and_msg(self, msg, args):
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for p in self._param.prompts:
if msg and msg[-1]["role"] == p["role"]:
continue
p = deepcopy(p)
p["content"] = self.string_format(p["content"], args)
msg.append(p)
return msg, self.string_format(self._param.sys_prompt, args)
def _prepare_prompt_variables(self):
if self._param.visual_files_var:
self.imgs = self._canvas.get_variable_value(self._param.visual_files_var)
if not self.imgs:
self.imgs = []
self.imgs = [img for img in self.imgs if img[:len("data:image/")] == "data:image/"]
if self.imgs and TenantLLMService.llm_id2llm_type(self._param.llm_id) == LLMType.CHAT.value:
self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT.value,
self._param.llm_id, max_retries=self._param.max_retries,
retry_interval=self._param.delay_after_error
)
args = {}
vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
try:
args[k] = json.dumps(args[k], ensure_ascii=False)
except Exception:
args[k] = str(args[k])
self.set_input_value(k, args[k])
msg, sys_prompt = self._sys_prompt_and_msg(self._canvas.get_history(self._param.message_history_window_size)[:-1], args)
user_defined_prompt, sys_prompt = self._extract_prompts(sys_prompt)
if self._param.cite and self._canvas.get_reference()["chunks"]:
sys_prompt += citation_prompt(user_defined_prompt)
return sys_prompt, msg, user_defined_prompt
def _extract_prompts(self, sys_prompt):
pts = {}
for tag in ["TASK_ANALYSIS", "PLAN_GENERATION", "REFLECTION", "CONTEXT_SUMMARY", "CONTEXT_RANKING", "CITATION_GUIDELINES"]:
r = re.search(rf"<{tag}>(.*?)</{tag}>", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
if not r:
continue
pts[tag.lower()] = r.group(1)
sys_prompt = re.sub(rf"<{tag}>(.*?)</{tag}>", "", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
return pts, sys_prompt
def _generate(self, msg:list[dict], **kwargs) -> str:
if not self.imgs:
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs)
return self.chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs)
def _generate_streamly(self, msg:list[dict], **kwargs) -> Generator[str, None, None]:
ans = ""
last_idx = 0
endswith_think = False
def delta(txt):
nonlocal ans, last_idx, endswith_think
delta_ans = txt[last_idx:]
ans = txt
if delta_ans.find("<think>") == 0:
last_idx += len("<think>")
return "<think>"
elif delta_ans.find("<think>") > 0:
delta_ans = txt[last_idx:last_idx+delta_ans.find("<think>")]
last_idx += delta_ans.find("<think>")
return delta_ans
elif delta_ans.endswith("</think>"):
endswith_think = True
elif endswith_think:
endswith_think = False
return "</think>"
last_idx = len(ans)
if ans.endswith("</think>"):
last_idx -= len("</think>")
return re.sub(r"(<think>|</think>)", "", delta_ans)
if not self.imgs:
for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), **kwargs):
yield delta(txt)
else:
for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs):
yield delta(txt)
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
def clean_formated_answer(ans: str) -> str:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL)
return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
prompt, msg, _ = self._prepare_prompt_variables()
error: str = ""
if self._param.output_structure:
prompt += "\nThe output MUST follow this JSON format:\n"+json.dumps(self._param.output_structure, ensure_ascii=False, indent=2)
prompt += "\nRedundant information is FORBIDDEN."
for _ in range(self._param.max_retries+1):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
error = ""
ans = self._generate(msg)
msg.pop(0)
if ans.find("**ERROR**") >= 0:
logging.error(f"LLM response error: {ans}")
error = ans
continue
try:
self.set_output("structured_content", json_repair.loads(clean_formated_answer(ans)))
return
except Exception:
msg.append({"role": "user", "content": "The answer can't not be parsed as JSON"})
error = "The answer can't not be parsed as JSON"
if error:
self.set_output("_ERROR", error)
return
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self._stream_output, prompt, msg))
return
for _ in range(self._param.max_retries+1):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
error = ""
ans = self._generate(msg)
msg.pop(0)
if ans.find("**ERROR**") >= 0:
logging.error(f"LLM response error: {ans}")
error = ans
continue
self.set_output("content", ans)
break
if error:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
else:
self.set_output("_ERROR", error)
def _stream_output(self, prompt, msg):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer = ""
for ans in self._generate_streamly(msg):
if ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
yield self.get_exception_default_value()
else:
self.set_output("_ERROR", ans)
return
yield ans
answer += ans
self.set_output("content", answer)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str, user_defined_prompt:dict={}):
summ = tool_call_summary(self.chat_mdl, func_name, params, results, user_defined_prompt)
logging.info(f"[MEMORY]: {summ}")
self._canvas.add_memory(user, assist, summ)
def thoughts(self) -> str:
_, msg,_ = self._prepare_prompt_variables()
return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nIll figure out our best next move."

150
agent/component/message.py Normal file
View File

@@ -0,0 +1,150 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import random
import re
from functools import partial
from typing import Any
from agent.component.base import ComponentBase, ComponentParamBase
from jinja2 import Template as Jinja2Template
from api.utils.api_utils import timeout
class MessageParam(ComponentParamBase):
"""
Define the Message component parameters.
"""
def __init__(self):
super().__init__()
self.content = []
self.stream = True
self.outputs = {
"content": {
"type": "str"
}
}
def check(self):
self.check_empty(self.content, "[Message] Content")
self.check_boolean(self.stream, "[Message] stream")
return True
class Message(ComponentBase):
component_name = "Message"
def get_kwargs(self, script:str, kwargs:dict = {}, delimiter:str=None) -> tuple[str, dict[str, str | list | Any]]:
for k,v in self.get_input_elements_from_text(script).items():
if k in kwargs:
continue
v = v["value"]
if not v:
v = ""
ans = ""
if isinstance(v, partial):
for t in v():
ans += t
elif isinstance(v, list) and delimiter:
ans = delimiter.join([str(vv) for vv in v])
elif not isinstance(v, str):
try:
ans = json.dumps(v, ensure_ascii=False)
except Exception:
pass
else:
ans = v
if not ans:
ans = ""
kwargs[k] = ans
self.set_input_value(k, ans)
_kwargs = {}
for n, v in kwargs.items():
_n = re.sub("[@:.]", "_", n)
script = re.sub(r"\{%s\}" % re.escape(n), _n, script)
_kwargs[_n] = v
return script, _kwargs
def _stream(self, rand_cnt:str):
s = 0
all_content = ""
cache = {}
for r in re.finditer(self.variable_ref_patt, rand_cnt, flags=re.DOTALL):
all_content += rand_cnt[s: r.start()]
yield rand_cnt[s: r.start()]
s = r.end()
exp = r.group(1)
if exp in cache:
yield cache[exp]
all_content += cache[exp]
continue
v = self._canvas.get_variable_value(exp)
if not v:
v = ""
if isinstance(v, partial):
cnt = ""
for t in v():
all_content += t
cnt += t
yield t
continue
elif not isinstance(v, str):
try:
v = json.dumps(v, ensure_ascii=False, indent=2)
except Exception:
v = str(v)
yield v
all_content += v
cache[exp] = v
if s < len(rand_cnt):
all_content += rand_cnt[s: ]
yield rand_cnt[s: ]
self.set_output("content", all_content)
def _is_jinjia2(self, content:str) -> bool:
patt = [
r"\{%.*%\}", "{{", "}}"
]
return any([re.search(p, content) for p in patt])
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
rand_cnt = random.choice(self._param.content)
if self._param.stream and not self._is_jinjia2(rand_cnt):
self.set_output("content", partial(self._stream, rand_cnt))
return
rand_cnt, kwargs = self.get_kwargs(rand_cnt, kwargs)
template = Jinja2Template(rand_cnt)
try:
content = template.render(kwargs)
except Exception:
pass
for n, v in kwargs.items():
content = re.sub(n, v, content)
self.set_output("content", content)
def thoughts(self) -> str:
return ""

View File

@@ -0,0 +1,100 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
from abc import ABC
from jinja2 import Template as Jinja2Template
from agent.component.base import ComponentParamBase
from api.utils.api_utils import timeout
from .message import Message
class StringTransformParam(ComponentParamBase):
"""
Define the code sandbox component parameters.
"""
def __init__(self):
super().__init__()
self.method = "split"
self.script = ""
self.split_ref = ""
self.delimiters = [","]
self.outputs = {"result": {"value": "", "type": "string"}}
def check(self):
self.check_valid_value(self.method, "Support method", ["split", "merge"])
self.check_empty(self.delimiters, "delimiters")
class StringTransform(Message, ABC):
component_name = "StringTransform"
def get_input_form(self) -> dict[str, dict]:
if self._param.method == "split":
return {
"line": {
"name": "String",
"type": "line"
}
}
return {k: {
"name": o["name"],
"type": "line"
} for k, o in self.get_input_elements_from_text(self._param.script).items()}
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
if self._param.method == "split":
self._split(kwargs.get("line"))
else:
self._merge(kwargs)
def _split(self, line:str|None = None):
var = self._canvas.get_variable_value(self._param.split_ref) if not line else line
if not var:
var = ""
assert isinstance(var, str), "The input variable is not a string: {}".format(type(var))
self.set_input_value(self._param.split_ref, var)
res = []
for i,s in enumerate(re.split(r"(%s)"%("|".join([re.escape(d) for d in self._param.delimiters])), var, flags=re.DOTALL)):
if i % 2 == 1:
continue
res.append(s)
self.set_output("result", res)
def _merge(self, kwargs:dict[str, str] = {}):
script = self._param.script
script, kwargs = self.get_kwargs(script, kwargs, self._param.delimiters[0])
if self._is_jinjia2(script):
template = Jinja2Template(script)
try:
script = template.render(kwargs)
except Exception:
pass
for k,v in kwargs.items():
if not v:
v = ""
script = re.sub(k, lambda match: v, script)
self.set_output("result", script)
def thoughts(self) -> str:
return f"It's {self._param.method}ing."

131
agent/component/switch.py Normal file
View File

@@ -0,0 +1,131 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numbers
import os
from abc import ABC
from typing import Any
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
class SwitchParam(ComponentParamBase):
"""
Define the Switch component parameters.
"""
def __init__(self):
super().__init__()
"""
{
"logical_operator" : "and | or"
"items" : [
{"cpn_id": "categorize:0", "operator": "contains", "value": ""},
{"cpn_id": "categorize:0", "operator": "contains", "value": ""},...],
"to": ""
}
"""
self.conditions = []
self.end_cpn_ids = []
self.operators = ['contains', 'not contains', 'start with', 'end with', 'empty', 'not empty', '=', '', '>',
'<', '', '']
def check(self):
self.check_empty(self.conditions, "[Switch] conditions")
for cond in self.conditions:
if not cond["to"]:
raise ValueError("[Switch] 'To' can not be empty!")
self.check_empty(self.end_cpn_ids, "[Switch] the ELSE/Other destination can not be empty.")
def get_input_form(self) -> dict[str, dict]:
return {
"urls": {
"name": "URLs",
"type": "line"
}
}
class Switch(ComponentBase, ABC):
component_name = "Switch"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
def _invoke(self, **kwargs):
for cond in self._param.conditions:
res = []
for item in cond["items"]:
if not item["cpn_id"]:
continue
cpn_v = self._canvas.get_variable_value(item["cpn_id"])
self.set_input_value(item["cpn_id"], cpn_v)
operatee = item.get("value", "")
if isinstance(cpn_v, numbers.Number):
operatee = float(operatee)
res.append(self.process_operator(cpn_v, item["operator"], operatee))
if cond["logical_operator"] != "and" and any(res):
self.set_output("next", [self._canvas.get_component_name(cpn_id) for cpn_id in cond["to"]])
self.set_output("_next", cond["to"])
return
if all(res):
self.set_output("next", [self._canvas.get_component_name(cpn_id) for cpn_id in cond["to"]])
self.set_output("_next", cond["to"])
return
self.set_output("next", [self._canvas.get_component_name(cpn_id) for cpn_id in self._param.end_cpn_ids])
self.set_output("_next", self._param.end_cpn_ids)
def process_operator(self, input: Any, operator: str, value: Any) -> bool:
if operator == "contains":
return True if value.lower() in input.lower() else False
elif operator == "not contains":
return True if value.lower() not in input.lower() else False
elif operator == "start with":
return True if input.lower().startswith(value.lower()) else False
elif operator == "end with":
return True if input.lower().endswith(value.lower()) else False
elif operator == "empty":
return True if not input else False
elif operator == "not empty":
return True if input else False
elif operator == "=":
return True if input == value else False
elif operator == "":
return True if input != value else False
elif operator == ">":
try:
return True if float(input) > float(value) else False
except Exception:
return True if input > value else False
elif operator == "<":
try:
return True if float(input) < float(value) else False
except Exception:
return True if input < value else False
elif operator == "":
try:
return True if float(input) >= float(value) else False
except Exception:
return True if input >= value else False
elif operator == "":
try:
return True if float(input) <= float(value) else False
except Exception:
return True if input <= value else False
raise ValueError('Not supported operator' + operator)
def thoughts(self) -> str:
return "Im weighing a few options and will pick the next step shortly."

18
agent/settings.py Normal file
View File

@@ -0,0 +1,18 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
FLOAT_ZERO = 1e-8
PARAM_MAXDEPTH = 5

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,906 @@
{
"id": 8,
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:LuckyApplesGrab": {
"downstream": [
"Message:ModernSwansThrow"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Lead Agent**, responsible for initiating the multi-agent SEO blog generation process. You will receive the user\u2019s topic and blog goal, interpret the intent, and coordinate the downstream writing agents.\n\n# Goals\n\n1. Parse the user's initial input.\n\n2. Generate a high-level blog intent summary and writing plan.\n\n3. Provide clear instructions to the following Sub_Agents:\n\n - `Outline Agent` \u2192 Create the blog outline.\n\n - `Body Agent` \u2192 Write all sections based on outline.\n\n - `Editor Agent` \u2192 Polish and finalize the blog post.\n\n4. Merge outputs into a complete, readable blog draft in Markdown format.\n\n# Input\n\nYou will receive:\n\n- Blog topic\n\n- Target audience\n\n- Blog goal (e.g., SEO, education, product marketing)\n\n# Output Format\n\n```markdown\n\n## Parsed Writing Plan\n\n- **Topic**: [Extracted from user input]\n\n- **Audience**: [Summarized from user input]\n\n- **Intent**: [Inferred goal and style]\n\n- **Blog Type**: [e.g., Tutorial / Informative Guide / Marketing Content]\n\n- **Long-tail Keywords**: \n\n - keyword 1\n\n - keyword 2\n\n - keyword 3\n\n - ...\n\n## Instructions for Outline Agent\n\nPlease generate a structured outline including H2 and H3 headings. Assign 1\u20132 relevant keywords to each section. Keep it aligned with the user\u2019s intent and audience level.\n\n## Instructions for Body Agent\n\nWrite the full content based on the outline. Each section should be concise (500\u2013600 words), informative, and optimized for SEO. Use `Tavily Search` only when additional examples or context are needed.\n\n## Instructions for Editor Agent\n\nReview and refine the combined content. Improve transitions, ensure keyword integration, and add a meta title + meta description. Maintain Markdown formatting.\n\n\n## Guides\n\n- Do not generate blog content directly.\n\n- Focus on correct intent recognition and instruction generation.\n\n- Keep communication to downstream agents simple, scoped, and accurate.\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Agent",
"id": "Agent:SlickSpidersTurn",
"name": "Outline Agent",
"params": {
"delay_after_error": 1,
"description": "Generates a clear and SEO-friendly blog outline using H2/H3 headings based on the topic, audience, and intent provided by the lead agent. Each section includes suggested keywords for optimized downstream writing.\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 2,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline Agent**, a sub-agent in a multi-agent SEO blog writing system. You operate under the instruction of the `Lead Agent`, and your sole responsibility is to create a clear, well-structured, and SEO-optimized blog outline.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
}
},
{
"component_name": "Agent",
"id": "Agent:IcyPawsRescue",
"name": "Body Agent",
"params": {
"delay_after_error": 1,
"description": "Writes the full blog content section-by-section following the outline structure. It integrates target keywords naturally and uses Tavily Search only when additional facts or examples are needed.\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body Agent**, a sub-agent in a multi-agent SEO blog writing system. You operate under the instruction of the `Lead Agent`, and your job is to write the full blog content based on the outline created by the `OutlineWriter_Agent`.\n\n\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
}
},
{
"component_name": "Agent",
"id": "Agent:TenderAdsAllow",
"name": "Editor Agent",
"params": {
"delay_after_error": 1,
"description": "Polishes and finalizes the entire blog post. Enhances clarity, checks keyword usage, improves flow, and generates a meta title and description for SEO. Operates after all sections are completed.\n\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 2,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor Agent**, the final agent in a multi-agent SEO blog writing workflow. You are responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n## Integration Responsibilities\n\n- Maintain alignment with Lead Agent's original intent and audience\n\n- Preserve the structure and keyword strategy from Outline Agent\n\n- Enhance and polish Body Agent's content without altering core information\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:ModernSwansThrow": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:LuckyApplesGrab@content}"
]
}
},
"upstream": [
"Agent:LuckyApplesGrab"
]
},
"begin": {
"downstream": [
"Agent:LuckyApplesGrab"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:LuckyApplesGrabend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:LuckyApplesGrab",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LuckyApplesGrabstart-Message:ModernSwansThrowend",
"source": "Agent:LuckyApplesGrab",
"sourceHandle": "start",
"target": "Message:ModernSwansThrow",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LuckyApplesGrabagentBottom-Agent:SlickSpidersTurnagentTop",
"source": "Agent:LuckyApplesGrab",
"sourceHandle": "agentBottom",
"target": "Agent:SlickSpidersTurn",
"targetHandle": "agentTop"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LuckyApplesGrabagentBottom-Agent:IcyPawsRescueagentTop",
"source": "Agent:LuckyApplesGrab",
"sourceHandle": "agentBottom",
"target": "Agent:IcyPawsRescue",
"targetHandle": "agentTop"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LuckyApplesGrabagentBottom-Agent:TenderAdsAllowagentTop",
"source": "Agent:LuckyApplesGrab",
"sourceHandle": "agentBottom",
"target": "Agent:TenderAdsAllow",
"targetHandle": "agentTop"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:SlickSpidersTurntool-Tool:ThreeWallsRingend",
"source": "Agent:SlickSpidersTurn",
"sourceHandle": "tool",
"target": "Tool:ThreeWallsRing",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:IcyPawsRescuetool-Tool:FloppyJokesItchend",
"source": "Agent:IcyPawsRescue",
"sourceHandle": "tool",
"target": "Tool:FloppyJokesItch",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 38.19445084117184,
"y": 183.9781832844475
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Lead Agent**, responsible for initiating the multi-agent SEO blog generation process. You will receive the user\u2019s topic and blog goal, interpret the intent, and coordinate the downstream writing agents.\n\n# Goals\n\n1. Parse the user's initial input.\n\n2. Generate a high-level blog intent summary and writing plan.\n\n3. Provide clear instructions to the following Sub_Agents:\n\n - `Outline Agent` \u2192 Create the blog outline.\n\n - `Body Agent` \u2192 Write all sections based on outline.\n\n - `Editor Agent` \u2192 Polish and finalize the blog post.\n\n4. Merge outputs into a complete, readable blog draft in Markdown format.\n\n# Input\n\nYou will receive:\n\n- Blog topic\n\n- Target audience\n\n- Blog goal (e.g., SEO, education, product marketing)\n\n# Output Format\n\n```markdown\n\n## Parsed Writing Plan\n\n- **Topic**: [Extracted from user input]\n\n- **Audience**: [Summarized from user input]\n\n- **Intent**: [Inferred goal and style]\n\n- **Blog Type**: [e.g., Tutorial / Informative Guide / Marketing Content]\n\n- **Long-tail Keywords**: \n\n - keyword 1\n\n - keyword 2\n\n - keyword 3\n\n - ...\n\n## Instructions for Outline Agent\n\nPlease generate a structured outline including H2 and H3 headings. Assign 1\u20132 relevant keywords to each section. Keep it aligned with the user\u2019s intent and audience level.\n\n## Instructions for Body Agent\n\nWrite the full content based on the outline. Each section should be concise (500\u2013600 words), informative, and optimized for SEO. Use `Tavily Search` only when additional examples or context are needed.\n\n## Instructions for Editor Agent\n\nReview and refine the combined content. Improve transitions, ensure keyword integration, and add a meta title + meta description. Maintain Markdown formatting.\n\n\n## Guides\n\n- Do not generate blog content directly.\n\n- Focus on correct intent recognition and instruction generation.\n\n- Keep communication to downstream agents simple, scoped, and accurate.\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Lead Agent"
},
"id": "Agent:LuckyApplesGrab",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 350,
"y": 200
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"content": [
"{Agent:LuckyApplesGrab@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:ModernSwansThrow",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 669.394830760932,
"y": 190.72421137520644
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "Generates a clear and SEO-friendly blog outline using H2/H3 headings based on the topic, audience, and intent provided by the lead agent. Each section includes suggested keywords for optimized downstream writing.\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 2,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline Agent**, a sub-agent in a multi-agent SEO blog writing system. You operate under the instruction of the `Lead Agent`, and your sole responsibility is to create a clear, well-structured, and SEO-optimized blog outline.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
},
"label": "Agent",
"name": "Outline Agent"
},
"dragging": false,
"id": "Agent:SlickSpidersTurn",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 100.60137004146719,
"y": 411.67654846431367
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "Writes the full blog content section-by-section following the outline structure. It integrates target keywords naturally and uses Tavily Search only when additional facts or examples are needed.\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body Agent**, a sub-agent in a multi-agent SEO blog writing system. You operate under the instruction of the `Lead Agent`, and your job is to write the full blog content based on the outline created by the `OutlineWriter_Agent`.\n\n\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
},
"label": "Agent",
"name": "Body Agent"
},
"dragging": false,
"id": "Agent:IcyPawsRescue",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 439.3374395738501,
"y": 366.1408588516909
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "Polishes and finalizes the entire blog post. Enhances clarity, checks keyword usage, improves flow, and generates a meta title and description for SEO. Operates after all sections are completed.\n\n",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 2,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "{sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor Agent**, the final agent in a multi-agent SEO blog writing workflow. You are responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n## Integration Responsibilities\n\n- Maintain alignment with Lead Agent's original intent and audience\n\n- Preserve the structure and keyword strategy from Outline Agent\n\n- Enhance and polish Body Agent's content without altering core information\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "This is the order you need to send to the agent.",
"visual_files_var": ""
},
"label": "Agent",
"name": "Editor Agent"
},
"dragging": false,
"id": "Agent:TenderAdsAllow",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 730.8513124709204,
"y": 327.351197329827
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_0"
},
"dragging": false,
"id": "Tool:ThreeWallsRing",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -26.93431957115564,
"y": 531.4384641920368
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_1"
},
"dragging": false,
"id": "Tool:FloppyJokesItch",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 414.6786783453011,
"y": 499.39483076093194
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"text": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI \u201cwriters\u201d, where each agent plays a specialized role \u2014 just like a real editorial team.\n\nInstead of one AI doing everything in order, this version uses a **Lead Agent** to assign tasks to different sub-agents, who then write and edit the blog in parallel. The Lead Agent manages everything and produces the final output.\n\n### Why use multi-agent format?\n\n- Better control over each stage of writing \n- Easier to reuse agents across tasks \n- More human-like workflow (planning \u2192 writing \u2192 editing \u2192 publishing) \n- Easier to scale and customize for advanced users\n\n### Flow Summary:\n\n1. `LeadWriter_Agent` takes your input and creates a plan\n2. It sends that plan to:\n - `OutlineWriter_Agent`: build blog structure\n - `BodyWriter_Agent`: write full content\n - `FinalEditor_Agent`: polish and finalize\n3. `LeadWriter_Agent` collects all results and outputs the final blog post\n"
},
"label": "Note",
"name": "Workflow Overall Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 208,
"id": "Note:ElevenVansInvent",
"measured": {
"height": 208,
"width": 518
},
"position": {
"x": -336.6586460874556,
"y": 113.43253511344867
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 518
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis is the central agent that controls the entire writing process.\n\n**What it does**:\n- Reads your blog topic and intent\n- Generates a clear writing plan (topic, audience, goal, keywords)\n- Sends instructions to all sub-agents\n- Waits for their responses and checks quality\n- If any section is missing or weak, it can request a rewrite\n- Finally, it assembles all parts into a complete blog and sends it back to you\n"
},
"label": "Note",
"name": "Lead Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 146,
"id": "Note:EmptyClubsGreet",
"measured": {
"height": 146,
"width": 334
},
"position": {
"x": 390.1408623279084,
"y": 2.6521144030202493
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 334
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is responsible for building the blog's structure. It creates an outline that shows what the article will cover and how it's organized.\n\n**What it does**:\n- Suggests a blog title that matches the topic and keywords \n- Breaks the article into sections using H2 and H3 headers \n- Adds a short description of what each section should include \n- Assigns SEO keywords to each section for better search visibility \n- Uses search data (via Tavily Search) to find how similar blogs are structured"
},
"label": "Note",
"name": "Outline Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 157,
"id": "Note:CurlyTigersDouble",
"measured": {
"height": 157,
"width": 394
},
"position": {
"x": -60.03139680691618,
"y": 595.8208080534818
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 394
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is in charge of writing the full blog content, section by section, based on the outline it receives.\n\n**What it does**:\n- Takes each section heading from the outline (H2 / H3)\n- Writes a complete paragraph (150\u2013220 words) under each section\n- Naturally includes the keywords provided for that section\n- Uses the Tavily Search tool to add real-world examples, definitions, or facts if needed\n- Makes sure each section is clear, useful, and easy to read\n"
},
"label": "Note",
"name": "Body Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 164,
"id": "Note:StrongKingsCamp",
"measured": {
"height": 164,
"width": 408
},
"position": {
"x": 446.54943226110845,
"y": 590.9443887062529
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 408
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reviews, polishes, and finalizes the blog post written by the BodyWriter_Agent. It ensures everything is clean, smooth, and SEO-compliant.\n\n**What it does**:\n- Improves grammar, sentence flow, and transitions \n- Makes sure the content reads naturally and professionally \n- Checks whether keywords are present and well integrated (but not overused) \n- Verifies that the structure follows the correct H1/H2/H3 format \n"
},
"label": "Note",
"name": "Editor Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 147,
"id": "Note:OpenOttersShow",
"measured": {
"height": 147,
"width": 357
},
"position": {
"x": 976.6858726228803,
"y": 422.7404806291804
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 357
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,331 @@
{
"id": 20,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@@ -0,0 +1,331 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@@ -0,0 +1,919 @@
{
"id": 12,
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing",
"dsl": {
"components": {
"Agent:BetterSitesSend": {
"downstream": [
"Agent:EagerNailsRemain"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:ClearRabbitsScream"
]
},
"Agent:ClearRabbitsScream": {
"downstream": [
"Agent:BetterSitesSend"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Agent:EagerNailsRemain": {
"downstream": [
"Agent:LovelyHeadsOwn"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:BetterSitesSend"
]
},
"Agent:LovelyHeadsOwn": {
"downstream": [
"Message:LegalBeansBet"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:EagerNailsRemain"
]
},
"Message:LegalBeansBet": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
}
},
"upstream": [
"Agent:LovelyHeadsOwn"
]
},
"begin": {
"downstream": [
"Agent:ClearRabbitsScream"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:ClearRabbitsScreamend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:ClearRabbitsScream",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:ClearRabbitsScreamstart-Agent:BetterSitesSendend",
"source": "Agent:ClearRabbitsScream",
"sourceHandle": "start",
"target": "Agent:BetterSitesSend",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendtool-Tool:SharpPensBurnend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "tool",
"target": "Tool:SharpPensBurn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendstart-Agent:EagerNailsRemainend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "start",
"target": "Agent:EagerNailsRemain",
"targetHandle": "end"
},
{
"id": "xy-edge__Agent:EagerNailsRemaintool-Tool:WickedDeerHealend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "tool",
"target": "Tool:WickedDeerHeal",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:EagerNailsRemainstart-Agent:LovelyHeadsOwnend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "start",
"target": "Agent:LovelyHeadsOwn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LovelyHeadsOwnstart-Message:LegalBeansBetend",
"source": "Agent:LovelyHeadsOwn",
"sourceHandle": "start",
"target": "Message:LegalBeansBet",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
},
"label": "Begin",
"name": "begin"
},
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 50,
"y": 200
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Parse And Keyword Agent"
},
"dragging": false,
"id": "Agent:ClearRabbitsScream",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 344.7766966202233,
"y": 234.82202253184496
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Outline Agent"
},
"dragging": false,
"id": "Agent:BetterSitesSend",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 613.4368763415628,
"y": 164.3074269048589
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_0"
},
"dragging": false,
"id": "Tool:SharpPensBurn",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 580.1877078861457,
"y": 287.7669662022325
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Body Agent"
},
"dragging": false,
"id": "Agent:EagerNailsRemain",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 889.0614605692713,
"y": 247.00973041799065
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_1"
},
"dragging": false,
"id": "Tool:WickedDeerHeal",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 853.2006404239659,
"y": 364.37541577229143
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Editor Agent"
},
"dragging": false,
"id": "Agent:LovelyHeadsOwn",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 1160.3332919804993,
"y": 149.50806732882472
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:LegalBeansBet",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1370.6665839609984,
"y": 267.0323933738015
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"text": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don\u2019t need any writing experience. Just provide a topic or short request \u2014 the system will handle the rest.\n\nThe process includes the following key stages:\n\n1. **Understanding your topic and goals**\n2. **Designing the blog structure**\n3. **Writing high-quality content**\n\n\n"
},
"label": "Note",
"name": "Workflow Overall Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 205,
"id": "Note:SlimyGhostsWear",
"measured": {
"height": 205,
"width": 415
},
"position": {
"x": -284.3143151688742,
"y": 150.47632147913419
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 415
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reads the user\u2019s input and figures out what kind of blog needs to be written.\n\n**What it does**:\n- Understands the main topic you want to write about \n- Identifies who the blog is for (e.g., beginners, marketers, developers) \n- Determines the writing purpose (e.g., SEO traffic, product promotion, education) \n- Suggests 3\u20135 long-tail SEO keywords related to the topic"
},
"label": "Note",
"name": "Parse And Keyword Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 152,
"id": "Note:EmptyChairsShake",
"measured": {
"height": 152,
"width": 340
},
"position": {
"x": 295.04147626768133,
"y": 372.2755718118446
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 340
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent builds the blog structure \u2014 just like writing a table of contents before you start writing the full article.\n\n**What it does**:\n- Suggests a clear blog title that includes important keywords \n- Breaks the article into sections using H2 and H3 headings (like a professional blog layout) \n- Assigns 1\u20132 recommended keywords to each section to help with SEO \n- Follows the writing goal and target audience set in the previous step"
},
"label": "Note",
"name": "Outline Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 146,
"id": "Note:TallMelonsNotice",
"measured": {
"height": 146,
"width": 343
},
"position": {
"x": 598.5644991893463,
"y": 5.801054564756448
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 343
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is responsible for writing the actual content of the blog \u2014 paragraph by paragraph \u2014 based on the outline created earlier.\n\n**What it does**:\n- Looks at each H2/H3 section in the outline \n- Writes 150\u2013220 words of clear, helpful, and well-structured content per section \n- Includes the suggested SEO keywords naturally (not keyword stuffing) \n- Uses real examples or facts if needed (by calling a web search tool like Tavily)"
},
"label": "Note",
"name": "Body Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 137,
"id": "Note:RipeCougarsBuild",
"measured": {
"height": 137,
"width": 319
},
"position": {
"x": 860.4854129814981,
"y": 427.2196835690842
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 319
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reviews the entire blog draft to make sure it is smooth, professional, and SEO-friendly. It acts like a human editor before publishing.\n\n**What it does**:\n- Polishes the writing: improves sentence clarity, fixes awkward phrasing \n- Makes sure the content flows well from one section to the next \n- Double-checks keyword usage: are they present, natural, and not overused? \n- Verifies the blog structure (H1, H2, H3 headings) is correct \n- Adds two key SEO elements:\n - **Meta Title** (shows up in search results)\n - **Meta Description** (summary for Google and social sharing)"
},
"label": "Note",
"name": "Editor Agent"
},
"dragHandle": ".note-drag-handle",
"height": 146,
"id": "Note:OpenTurkeysSell",
"measured": {
"height": 146,
"width": 320
},
"position": {
"x": 1129,
"y": -30
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 320
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@@ -0,0 +1,919 @@
{
"id": 4,
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:BetterSitesSend": {
"downstream": [
"Agent:EagerNailsRemain"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:ClearRabbitsScream"
]
},
"Agent:ClearRabbitsScream": {
"downstream": [
"Agent:BetterSitesSend"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Agent:EagerNailsRemain": {
"downstream": [
"Agent:LovelyHeadsOwn"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:BetterSitesSend"
]
},
"Agent:LovelyHeadsOwn": {
"downstream": [
"Message:LegalBeansBet"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Agent:EagerNailsRemain"
]
},
"Message:LegalBeansBet": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
}
},
"upstream": [
"Agent:LovelyHeadsOwn"
]
},
"begin": {
"downstream": [
"Agent:ClearRabbitsScream"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:ClearRabbitsScreamend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:ClearRabbitsScream",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:ClearRabbitsScreamstart-Agent:BetterSitesSendend",
"source": "Agent:ClearRabbitsScream",
"sourceHandle": "start",
"target": "Agent:BetterSitesSend",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendtool-Tool:SharpPensBurnend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "tool",
"target": "Tool:SharpPensBurn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:BetterSitesSendstart-Agent:EagerNailsRemainend",
"source": "Agent:BetterSitesSend",
"sourceHandle": "start",
"target": "Agent:EagerNailsRemain",
"targetHandle": "end"
},
{
"id": "xy-edge__Agent:EagerNailsRemaintool-Tool:WickedDeerHealend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "tool",
"target": "Tool:WickedDeerHeal",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:EagerNailsRemainstart-Agent:LovelyHeadsOwnend",
"source": "Agent:EagerNailsRemain",
"sourceHandle": "start",
"target": "Agent:LovelyHeadsOwn",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:LovelyHeadsOwnstart-Message:LegalBeansBetend",
"source": "Agent:LovelyHeadsOwn",
"sourceHandle": "start",
"target": "Message:LegalBeansBet",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SEO blog assistant.\n\nTo get started, please tell me:\n1. What topic you want the blog to cover\n2. Who is the target audience\n3. What you hope to achieve with this blog (e.g., SEO traffic, teaching beginners, promoting a product)\n"
},
"label": "Begin",
"name": "begin"
},
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 50,
"y": 200
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The user query is {sys.query}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Parse_And_Keyword_Agent**, responsible for interpreting a user's blog writing request and generating a structured writing intent summary and keyword strategy for SEO-optimized content generation.\n\n# Goals\n\n1. Extract and infer the user's true writing intent, even if the input is informal or vague.\n\n2. Identify the writing type, target audience, and implied goal.\n\n3. Suggest 3\u20135 long-tail keywords based on the input and context.\n\n4. Output all data in a Markdown format for downstream agents.\n\n# Operating Guidelines\n\n\n- If the user's input lacks clarity, make reasonable and **conservative** assumptions based on SEO best practices.\n\n- Always choose one clear \"Writing Type\" from the list below.\n\n- Your job is not to write the blog \u2014 only to structure the brief.\n\n# Output Format\n\n```markdown\n## Writing Type\n\n[Choose one: Tutorial / Informative Guide / Marketing Content / Case Study / Opinion Piece / How-to / Comparison Article]\n\n## Target Audience\n\n[Try to be specific based on clues in the input: e.g., marketing managers, junior developers, SEO beginners]\n\n## User Intent Summary\n\n[A 1\u20132 sentence summary of what the user wants to achieve with the blog post]\n\n## Suggested Long-tail Keywords\n\n- keyword 1\n\n- keyword 2\n\n- keyword 3\n\n- keyword 4 (optional)\n\n- keyword 5 (optional)\n\n\n\n\n## Input Examples (and how to handle them)\n\nInput: \"I want to write about RAGFlow.\"\n\u2192 Output: Informative Guide, Audience: AI developers, Intent: explain what RAGFlow is and its use cases\n\nInput: \"Need a blog to promote our prompt design tool.\"\n\u2192 Output: Marketing Content, Audience: product managers or tool adopters, Intent: raise awareness and interest in the product\n\n\n\nInput: \"How to get more Google traffic using AI\"\n\u2192 Output: How-to, Audience: SEO marketers, Intent: guide readers on applying AI for SEO growth",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Parse And Keyword Agent"
},
"dragging": false,
"id": "Agent:ClearRabbitsScream",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 344.7766966202233,
"y": 234.82202253184496
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.3,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Balance",
"presencePenaltyEnabled": false,
"presence_penalty": 0.2,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Outline_Agent**, responsible for generating a clear and SEO-optimized blog outline based on the user's parsed writing intent and keyword strategy.\n\n# Tool Access:\n\n- You have access to a search tool called `Tavily Search`.\n\n- If you are unsure how to structure a section, you may call this tool to search for related blog outlines or content from Google.\n\n- Do not overuse it. Your job is to extract **structure**, not to write paragraphs.\n\n\n# Goals\n\n1. Create a well-structured outline with appropriate H2 and H3 headings.\n\n2. Ensure logical flow from introduction to conclusion.\n\n3. Assign 1\u20132 suggested long-tail keywords to each major section for SEO alignment.\n\n4. Make the structure suitable for downstream paragraph writing.\n\n\n\n\n#Note\n\n- Use concise, scannable section titles.\n\n- Do not write full paragraphs.\n\n- Prioritize clarity, logical progression, and SEO alignment.\n\n\n\n- If the blog type is \u201cTutorial\u201d or \u201cHow-to\u201d, include step-based sections.\n\n\n# Input\n\nYou will receive:\n\n- Writing Type (e.g., Tutorial, Informative Guide)\n\n- Target Audience\n\n- User Intent Summary\n\n- 3\u20135 long-tail keywords\n\n\nUse this information to design a structure that both informs readers and maximizes search engine visibility.\n\n# Output Format\n\n```markdown\n\n## Blog Title (suggested)\n\n[Give a short, SEO-friendly title suggestion]\n\n## Outline\n\n### Introduction\n\n- Purpose of the article\n\n- Brief context\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 1]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 2]\n\n- [Short description of what this section will cover]\n\n- **Suggested keywords**: [keyword1, keyword2]\n\n### H2: [Section Title 3]\n\n- [Optional H3 Subsection Title A]\n\n - [Explanation of sub-point]\n\n- [Optional H3 Subsection Title B]\n\n - [Explanation of sub-point]\n\n- **Suggested keywords**: [keyword1]\n\n### Conclusion\n\n- Recap key takeaways\n\n- Optional CTA (Call to Action)\n\n- **Suggested keywords**: [keyword3]\n\n",
"temperature": 0.5,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.85,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Outline Agent"
},
"dragging": false,
"id": "Agent:BetterSitesSend",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 613.4368763415628,
"y": 164.3074269048589
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_0"
},
"dragging": false,
"id": "Tool:SharpPensBurn",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 580.1877078861457,
"y": 287.7669662022325
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\n\n\nThe Outline agent output is {Agent:BetterSitesSend@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Body_Agent**, responsible for generating the full content of each section of an SEO-optimized blog based on the provided outline and keyword strategy.\n\n# Tool Access:\n\nYou can use the `Tavily Search` tool to retrieve relevant content, statistics, or examples to support each section you're writing.\n\nUse it **only** when the provided outline lacks enough information, or if the section requires factual grounding.\n\nAlways cite the original link or indicate source where possible.\n\n\n# Goals\n\n1. Write each section (based on H2/H3 structure) as a complete and natural blog paragraph.\n\n2. Integrate the suggested long-tail keywords naturally into each section.\n\n3. When appropriate, use the `Tavily Search` tool to enrich your writing with relevant facts, examples, or quotes.\n\n4. Ensure each section is clear, engaging, and informative, suitable for both human readers and search engines.\n\n\n# Style Guidelines\n\n- Write in a tone appropriate to the audience. Be explanatory, not promotional, unless it's a marketing blog.\n\n- Avoid generic filler content. Prioritize clarity, structure, and value.\n\n- Ensure SEO keywords are embedded seamlessly, not forcefully.\n\n\n\n- Maintain writing rhythm. Vary sentence lengths. Use transitions between ideas.\n\n\n# Input\n\n\nYou will receive:\n\n- Blog title\n\n- Structured outline (including section titles, keywords, and descriptions)\n\n- Target audience\n\n- Blog type and user intent\n\nYou must **follow the outline strictly**. Write content **section-by-section**, based on the structure.\n\n\n# Output Format\n\n```markdown\n\n## H2: [Section Title]\n\n[Your generated content for this section \u2014 500-600 words, using keywords naturally.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [
{
"component_name": "TavilySearch",
"name": "TavilySearch",
"params": {
"api_key": "",
"days": 7,
"exclude_domains": [],
"include_answer": false,
"include_domains": [],
"include_image_descriptions": false,
"include_images": false,
"include_raw_content": true,
"max_results": 5,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"query": "sys.query",
"search_depth": "basic",
"topic": "general"
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Body Agent"
},
"dragging": false,
"id": "Agent:EagerNailsRemain",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 889.0614605692713,
"y": 247.00973041799065
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_1"
},
"dragging": false,
"id": "Tool:WickedDeerHeal",
"measured": {
"height": 44,
"width": 200
},
"position": {
"x": 853.2006404239659,
"y": 364.37541577229143
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "deepseek-chat@DeepSeek",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 4096,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "The parse and keyword agent output is {Agent:ClearRabbitsScream@content}\n\nThe Outline agent output is {Agent:BetterSitesSend@content}\n\nThe Body agent output is {Agent:EagerNailsRemain@content}",
"role": "user"
}
],
"sys_prompt": "# Role\n\nYou are the **Editor_Agent**, responsible for finalizing the blog post for both human readability and SEO effectiveness.\n\n# Goals\n\n1. Polish the entire blog content for clarity, coherence, and style.\n\n2. Improve transitions between sections, ensure logical flow.\n\n3. Verify that keywords are used appropriately and effectively.\n\n4. Conduct a lightweight SEO audit \u2014 checking keyword density, structure (H1/H2/H3), and overall searchability.\n\n\n\n# Style Guidelines\n\n- Be precise. Avoid bloated or vague language.\n\n- Maintain an informative and engaging tone, suitable to the target audience.\n\n- Do not remove keywords unless absolutely necessary for clarity.\n\n- Ensure paragraph flow and section continuity.\n\n\n# Input\n\nYou will receive:\n\n- Full blog content, written section-by-section\n\n- Original outline with suggested keywords\n\n- Target audience and writing type\n\n# Output Format\n\n```markdown\n\n[The revised, fully polished blog post content goes here.]\n\n",
"temperature": 0.2,
"temperatureEnabled": true,
"tools": [],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Editor Agent"
},
"dragging": false,
"id": "Agent:LovelyHeadsOwn",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 1160.3332919804993,
"y": 149.50806732882472
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"content": [
"{Agent:LovelyHeadsOwn@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:LegalBeansBet",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1370.6665839609984,
"y": 267.0323933738015
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"text": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You don\u2019t need any writing experience. Just provide a topic or short request \u2014 the system will handle the rest.\n\nThe process includes the following key stages:\n\n1. **Understanding your topic and goals**\n2. **Designing the blog structure**\n3. **Writing high-quality content**\n\n\n"
},
"label": "Note",
"name": "Workflow Overall Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 205,
"id": "Note:SlimyGhostsWear",
"measured": {
"height": 205,
"width": 415
},
"position": {
"x": -284.3143151688742,
"y": 150.47632147913419
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 415
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reads the user\u2019s input and figures out what kind of blog needs to be written.\n\n**What it does**:\n- Understands the main topic you want to write about \n- Identifies who the blog is for (e.g., beginners, marketers, developers) \n- Determines the writing purpose (e.g., SEO traffic, product promotion, education) \n- Suggests 3\u20135 long-tail SEO keywords related to the topic"
},
"label": "Note",
"name": "Parse And Keyword Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 152,
"id": "Note:EmptyChairsShake",
"measured": {
"height": 152,
"width": 340
},
"position": {
"x": 295.04147626768133,
"y": 372.2755718118446
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 340
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent builds the blog structure \u2014 just like writing a table of contents before you start writing the full article.\n\n**What it does**:\n- Suggests a clear blog title that includes important keywords \n- Breaks the article into sections using H2 and H3 headings (like a professional blog layout) \n- Assigns 1\u20132 recommended keywords to each section to help with SEO \n- Follows the writing goal and target audience set in the previous step"
},
"label": "Note",
"name": "Outline Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 146,
"id": "Note:TallMelonsNotice",
"measured": {
"height": 146,
"width": 343
},
"position": {
"x": 598.5644991893463,
"y": 5.801054564756448
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 343
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent is responsible for writing the actual content of the blog \u2014 paragraph by paragraph \u2014 based on the outline created earlier.\n\n**What it does**:\n- Looks at each H2/H3 section in the outline \n- Writes 150\u2013220 words of clear, helpful, and well-structured content per section \n- Includes the suggested SEO keywords naturally (not keyword stuffing) \n- Uses real examples or facts if needed (by calling a web search tool like Tavily)"
},
"label": "Note",
"name": "Body Agent"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 137,
"id": "Note:RipeCougarsBuild",
"measured": {
"height": 137,
"width": 319
},
"position": {
"x": 860.4854129814981,
"y": 427.2196835690842
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 319
},
{
"data": {
"form": {
"text": "**Purpose**: \nThis agent reviews the entire blog draft to make sure it is smooth, professional, and SEO-friendly. It acts like a human editor before publishing.\n\n**What it does**:\n- Polishes the writing: improves sentence clarity, fixes awkward phrasing \n- Makes sure the content flows well from one section to the next \n- Double-checks keyword usage: are they present, natural, and not overused? \n- Verifies the blog structure (H1, H2, H3 headings) is correct \n- Adds two key SEO elements:\n - **Meta Title** (shows up in search results)\n - **Meta Description** (summary for Google and social sharing)"
},
"label": "Note",
"name": "Editor Agent"
},
"dragHandle": ".note-drag-handle",
"height": 146,
"id": "Note:OpenTurkeysSell",
"measured": {
"height": 146,
"width": 320
},
"position": {
"x": 1129,
"y": -30
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 320
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@@ -0,0 +1,716 @@
{
"id": 17,
"title": {
"en": "SQL Assistant",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing",
"dsl": {
"components": {
"Agent:WickedGoatsDivide": {
"downstream": [
"ExeSQL:TiredShirtsPull"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": "",
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.7,
"llm_id": "qwen-max@Tongyi-Qianwen",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 256,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"presencePenaltyEnabled": false,
"presence_penalty": 0.4,
"prompts": [
{
"content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
"role": "user"
}
],
"sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
"temperature": 0.1,
"temperatureEnabled": false,
"tools": [],
"topPEnabled": false,
"top_p": 0.3,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"Retrieval:HappyTiesFilm",
"Retrieval:SmartNewsHammer",
"Retrieval:SweetDancersAppear"
]
},
"ExeSQL:TiredShirtsPull": {
"downstream": [
"Message:ShaggyMasksAttend"
],
"obj": {
"component_name": "ExeSQL",
"params": {
"database": "",
"db_type": "mysql",
"host": "",
"max_records": 1024,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"password": "20010812Yy!",
"port": 3306,
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
}
},
"upstream": [
"Agent:WickedGoatsDivide"
]
},
"Message:ShaggyMasksAttend": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{ExeSQL:TiredShirtsPull@formalized_content}"
]
}
},
"upstream": [
"ExeSQL:TiredShirtsPull"
]
},
"Retrieval:HappyTiesFilm": {
"downstream": [
"Agent:WickedGoatsDivide"
],
"obj": {
"component_name": "Retrieval",
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
},
"upstream": [
"begin"
]
},
"Retrieval:SmartNewsHammer": {
"downstream": [
"Agent:WickedGoatsDivide"
],
"obj": {
"component_name": "Retrieval",
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
},
"upstream": [
"begin"
]
},
"Retrieval:SweetDancersAppear": {
"downstream": [
"Agent:WickedGoatsDivide"
],
"obj": {
"component_name": "Retrieval",
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
},
"upstream": [
"begin"
]
},
"begin": {
"downstream": [
"Retrieval:HappyTiesFilm",
"Retrieval:SmartNewsHammer",
"Retrieval:SweetDancersAppear"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SQL assistant. What can I do for you?"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Retrieval:HappyTiesFilmend",
"source": "begin",
"sourceHandle": "start",
"target": "Retrieval:HappyTiesFilm",
"targetHandle": "end"
},
{
"id": "xy-edge__beginstart-Retrieval:SmartNewsHammerend",
"source": "begin",
"sourceHandle": "start",
"target": "Retrieval:SmartNewsHammer",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Retrieval:SweetDancersAppearend",
"source": "begin",
"sourceHandle": "start",
"target": "Retrieval:SweetDancersAppear",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Retrieval:HappyTiesFilmstart-Agent:WickedGoatsDivideend",
"source": "Retrieval:HappyTiesFilm",
"sourceHandle": "start",
"target": "Agent:WickedGoatsDivide",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Retrieval:SmartNewsHammerstart-Agent:WickedGoatsDivideend",
"markerEnd": "logo",
"source": "Retrieval:SmartNewsHammer",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Agent:WickedGoatsDivide",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Retrieval:SweetDancersAppearstart-Agent:WickedGoatsDivideend",
"markerEnd": "logo",
"source": "Retrieval:SweetDancersAppear",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Agent:WickedGoatsDivide",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:WickedGoatsDividestart-ExeSQL:TiredShirtsPullend",
"source": "Agent:WickedGoatsDivide",
"sourceHandle": "start",
"target": "ExeSQL:TiredShirtsPull",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__ExeSQL:TiredShirtsPullstart-Message:ShaggyMasksAttendend",
"source": "ExeSQL:TiredShirtsPull",
"sourceHandle": "start",
"target": "Message:ShaggyMasksAttend",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "Hi! I'm your SQL assistant. What can I do for you?"
},
"label": "Begin",
"name": "begin"
},
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 50,
"y": 200
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
},
"label": "Retrieval",
"name": "Schema"
},
"dragging": false,
"id": "Retrieval:HappyTiesFilm",
"measured": {
"height": 96,
"width": 200
},
"position": {
"x": 414,
"y": 20.5
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "retrievalNode"
},
{
"data": {
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
},
"label": "Retrieval",
"name": "Question to SQL"
},
"dragging": false,
"id": "Retrieval:SmartNewsHammer",
"measured": {
"height": 96,
"width": 200
},
"position": {
"x": 406.5,
"y": 175.5
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "retrievalNode"
},
{
"data": {
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
},
"label": "Retrieval",
"name": "Database Description"
},
"dragging": false,
"id": "Retrieval:SweetDancersAppear",
"measured": {
"height": 96,
"width": 200
},
"position": {
"x": 403.5,
"y": 328
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "retrievalNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": "",
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.7,
"llm_id": "qwen-max@Tongyi-Qianwen",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 5,
"max_tokens": 256,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"presencePenaltyEnabled": false,
"presence_penalty": 0.4,
"prompts": [
{
"content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
"role": "user"
}
],
"sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
"temperature": 0.1,
"temperatureEnabled": false,
"tools": [],
"topPEnabled": false,
"top_p": 0.3,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "SQL Generator "
},
"dragging": false,
"id": "Agent:WickedGoatsDivide",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 981,
"y": 174
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"database": "",
"db_type": "mysql",
"host": "",
"max_records": 1024,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array<Object>",
"value": []
}
},
"password": "20010812Yy!",
"port": 3306,
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
},
"label": "ExeSQL",
"name": "ExeSQL"
},
"dragging": false,
"id": "ExeSQL:TiredShirtsPull",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1211.5,
"y": 212.5
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "ragNode"
},
{
"data": {
"form": {
"content": [
"{ExeSQL:TiredShirtsPull@formalized_content}"
]
},
"label": "Message",
"name": "Message"
},
"dragging": false,
"id": "Message:ShaggyMasksAttend",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 1447.3125,
"y": 181.5
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"text": "Searches for relevant database creation statements.\n\nIt should label with a knowledgebase to which the schema is dumped in. You could use \" General \" as parsing method, \" 2 \" as chunk size and \" ; \" as delimiter."
},
"label": "Note",
"name": "Note Schema"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 188,
"id": "Note:ThickClubsFloat",
"measured": {
"height": 188,
"width": 392
},
"position": {
"x": 689,
"y": -180.31251144409183
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 392
},
{
"data": {
"form": {
"text": "Searches for samples about question to SQL. \n\nYou could use \" Q&A \" as parsing method.\n\nPlease check this dataset:\nhttps://huggingface.co/datasets/InfiniFlow/text2sql"
},
"label": "Note",
"name": "Note: Question to SQL"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 154,
"id": "Note:ElevenLionsJoke",
"measured": {
"height": 154,
"width": 345
},
"position": {
"x": 693.5,
"y": 138
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 345
},
{
"data": {
"form": {
"text": "Searches for description about meanings of tables and fields.\n\nYou could use \" General \" as parsing method, \" 2 \" as chunk size and \" ### \" as delimiter."
},
"label": "Note",
"name": "Note: Database Description"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 158,
"id": "Note:ManyRosesTrade",
"measured": {
"height": 158,
"width": 408
},
"position": {
"x": 691.5,
"y": 435.69736389555317
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 408
},
{
"data": {
"form": {
"text": "The Agent learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
},
"label": "Note",
"name": "Note: SQL Generator"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"height": 132,
"id": "Note:RudeHousesInvite",
"measured": {
"height": 132,
"width": 383
},
"position": {
"x": 1106.9254833678003,
"y": 290.5891036507015
},
"resizing": false,
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode",
"width": 383
},
{
"data": {
"form": {
"text": "Connect to your database to execute SQL statements."
},
"label": "Note",
"name": "Note: SQL Executor"
},
"dragHandle": ".note-drag-handle",
"dragging": false,
"id": "Note:HungryBatsLay",
"measured": {
"height": 136,
"width": 255
},
"position": {
"x": 1185,
"y": -30
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "noteNode"
}
]
},
"history": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

46
agent/test/client.py Normal file
View File

@@ -0,0 +1,46 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
from agent.canvas import Canvas
from api import settings
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"retrieval_and_generate.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-m', '--stream', default=False, help="Stream output", action='store_true', required=False)
args = parser.parse_args()
settings.init_settings()
canvas = Canvas(open(args.dsl, "r").read(), args.tenant_id)
if canvas.get_prologue():
print(f"==================== Bot =====================\n> {canvas.get_prologue()}", end='')
query = ""
while True:
canvas.reset(True)
query = input("\n==================== User =====================\n> ")
ans = canvas.run(query=query)
print("==================== Bot =====================\n> ", end='')
for ans in canvas.run(query=query):
print(ans, end='\n', flush=True)
print(canvas.path)

View File

@@ -0,0 +1,85 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["categorize:0"],
"upstream": []
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"to": ["agent:0"]
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"to": ["message:0"]
}
}
}
},
"downstream": [],
"upstream": ["begin"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"content": [
"Sorry, I don't know. I'm an AI bot."
]
}
},
"downstream": [],
"upstream": ["categorize:0"]
},
"agent:0": {
"obj": {
"component_name": "Agent",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "You are a smart researcher. You could generate proper queries to search. According to the search results, you could deside next query if the result is not enough.",
"temperature": 0.2,
"llm_enabled_tools": [
{
"component_name": "TavilySearch",
"params": {
"api_key": "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"
}
}
]
}
},
"downstream": ["message:1"],
"upstream": ["categorize:0"]
},
"message:1": {
"obj": {
"component_name": "Message",
"params": {
"content": ["{agent:0@content}"]
}
},
"downstream": [],
"upstream": ["agent:0"]
}
},
"history": [],
"path": [],
"retrival": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}

View File

@@ -0,0 +1,43 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["exesql:0"],
"upstream": ["begin", "exesql:0"]
},
"exesql:0": {
"obj": {
"component_name": "ExeSQL",
"params": {
"database": "rag_flow",
"username": "root",
"host": "mysql",
"port": 3306,
"password": "infini_rag_flow",
"top_n": 3
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@@ -0,0 +1,210 @@
{
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "您好我是AGI方向的猎头了解到您是这方面的大佬然后冒昧的就联系到您。这边有个机会想和您分享RAGFlow正在招聘您这个岗位的资深的工程师不知道您那边是不是感兴趣"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "message:reject"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"interested": {
"description": "该回答表示他对于该职位感兴趣。",
"examples": "嗯\n说吧\n说说看\n还好吧\n是的\n哦\nyes\n具体说说",
"to": "message:introduction"
},
"answer": {
"description": "该回答表示他对于该职位不感兴趣,或感觉受到骚扰。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n我已经不干这个了\n我不是这个方向的",
"to": "message:reject"
}
}
}
},
"downstream": [
"message:introduction",
"generate:casual",
"message:reject",
"retrieval:0"
],
"upstream": ["answer:0"]
},
"message:introduction": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"我简单介绍以下:\nRAGFlow 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。https://github.com/infiniflow/ragflow\n您那边还有什么要了解的"
]
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0"]
},
"answer:1": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:1"],
"upstream": [
"message:introduction",
"generate:aboutJob",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
]
},
"categorize:1": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"wechat": {
"description": "该回答表示他愿意加微信,或者已经报了微信号。",
"examples": "嗯\n可以\n是的\n哦\nyes\n15002333453\nwindblow_2231",
"to": "generate:get_wechat"
},
"giveup": {
"description": "该回答表示他不愿意加微信。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n不方便\n不知道还要加我微信",
"to": "generate:nowechat"
}
},
"message_history_window_size": 8
}
},
"downstream": [
"retrieval:0",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
],
"upstream": ["answer:1"]
},
"generate:casual": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头现在候选人的聊了和职位无关的话题请耐心的回应候选人并将话题往该AGI的职位上带最好能要到候选人微信号以便后面保持联系。",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0", "categorize:1"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:aboutJob"],
"upstream": ["categorize:0", "categorize:1"]
},
"generate:aboutJob": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人问了有关职位或公司的问题你根据以下职位信息回答。如果职位信息中不包含候选人的问题就回答不清楚、不知道、有待确认等。回答完后引导候选人加微信号\n - 方便加一下微信吗我把JD发您看看\n - 微信号多少我把详细职位JD发您\n 职位信息如下:\n {input}\n 职位信息如上。",
"temperature": 0.02
}
},
"downstream": ["answer:1"],
"upstream": ["retrieval:0"]
},
"generate:get_wechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人表示不反感加微信如果对方已经报了微信号表示感谢和信任并表示马上会加上如果没有则问对方微信号多少。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"generate:nowechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头当你提出加微信时对方表示拒绝。你需要耐心礼貌的回应候选人表示对于保护隐私信息给予理解也可以询问他对该职位的看法和顾虑。并在恰当的时机再次询问微信联系方式。也可以鼓励候选人主动与你取得联系。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"message:reject": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"好的,祝您生活愉快,工作顺利。",
"哦,好的,感谢您宝贵的时间!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@@ -0,0 +1,92 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["generate:0"],
"upstream": []
},
"generate:0": {
"obj": {
"component_name": "Agent",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "You are an helpful research assistant. \nPlease decompose user's topic: '{sys.query}' into several meaningful sub-topics. \nThe output format MUST be an string array like: [\"sub-topic1\", \"sub-topic2\", ...]. Redundant information is forbidden.",
"temperature": 0.2,
"cite":false,
"output_structure": ["sub-topic1", "sub-topic2", "sub-topic3"]
}
},
"downstream": ["iteration:0"],
"upstream": ["begin"]
},
"iteration:0": {
"obj": {
"component_name": "Iteration",
"params": {
"items_ref": "generate:0@structured_content"
}
},
"downstream": ["message:0"],
"upstream": ["generate:0"]
},
"iterationitem:0": {
"obj": {
"component_name": "IterationItem",
"params": {}
},
"parent_id": "iteration:0",
"downstream": ["tavily:0"],
"upstream": []
},
"tavily:0": {
"obj": {
"component_name": "TavilySearch",
"params": {
"api_key": "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",
"query": "iterationitem:0@result"
}
},
"parent_id": "iteration:0",
"downstream": ["generate:1"],
"upstream": ["iterationitem:0"]
},
"generate:1": {
"obj": {
"component_name": "Agent",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "Your goal is to provide answers based on information from the internet. \nYou must use the provided search results to find relevant online information. \nYou should never use your own knowledge to answer questions.\nPlease include relevant url sources in the end of your answers.\n\n \"{tavily:0@formalized_content}\" \nUsing the above information, answer the following question or topic: \"{iterationitem:0@result} \"\nin a detailed report — The report should focus on the answer to the question, should be well structured, informative, in depth, with facts and numbers if available, a minimum of 200 words and with markdown syntax and apa format. Write all source urls at the end of the report in apa format. You should write your report only based on the given information and nothing else.",
"temperature": 0.9,
"cite":false
}
},
"parent_id": "iteration:0",
"downstream": ["iterationitem:0"],
"upstream": ["tavily:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"content": ["{iteration:0@generate:1}"]
}
},
"downstream": [],
"upstream": ["iteration:0"]
}
},
"history": [],
"path": [],
"retrival": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}

View File

@@ -0,0 +1,61 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["retrieval:0"],
"upstream": []
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "",
"empty_response": "Nothing found in dataset",
"kb_ids": ["1a3d1d7afb0611ef9866047c16ec874f"]
}
},
"downstream": ["generate:0"],
"upstream": ["begin"]
},
"generate:0": {
"obj": {
"component_name": "LLM",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {retrieval:0@formalized_content}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["message:0"],
"upstream": ["retrieval:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"content": ["{generate:0@content}"]
}
},
"downstream": [],
"upstream": ["generate:0"]
}
},
"history": [],
"path": [],
"retrival": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}

View File

@@ -0,0 +1,95 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["categorize:0"],
"upstream": []
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": [],
"to": ["retrieval:0"]
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": [],
"to": ["message:0"]
}
}
}
},
"downstream": [],
"upstream": ["begin"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"content": [
"Sorry, I don't know. I'm an AI bot."
]
}
},
"downstream": [],
"upstream": ["categorize:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "",
"empty_response": "Nothing found in dataset",
"kb_ids": ["1a3d1d7afb0611ef9866047c16ec874f"]
}
},
"downstream": ["generate:0"],
"upstream": ["categorize:0"]
},
"generate:0": {
"obj": {
"component_name": "Agent",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {retrieval:0@formalized_content}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["message:1"],
"upstream": ["retrieval:0"]
},
"message:1": {
"obj": {
"component_name": "Message",
"params": {
"content": ["{generate:0@content}"]
}
},
"downstream": [],
"upstream": ["generate:0"]
}
},
"history": [],
"path": [],
"retrival": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}

View File

@@ -0,0 +1,55 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["tavily:0"],
"upstream": []
},
"tavily:0": {
"obj": {
"component_name": "TavilySearch",
"params": {
"api_key": "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"
}
},
"downstream": ["generate:0"],
"upstream": ["begin"]
},
"generate:0": {
"obj": {
"component_name": "LLM",
"params": {
"llm_id": "deepseek-chat",
"sys_prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {tavily:0@formalized_content}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["message:0"],
"upstream": ["tavily:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"content": ["{generate:0@content}"]
}
},
"downstream": [],
"upstream": ["generate:0"]
}
},
"history": [],
"path": [],
"retrival": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}

48
agent/tools/__init__.py Normal file
View File

@@ -0,0 +1,48 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import importlib
import inspect
from types import ModuleType
from typing import Dict, Type
_package_path = os.path.dirname(__file__)
__all_classes: Dict[str, Type] = {}
def _import_submodules() -> None:
for filename in os.listdir(_package_path): # noqa: F821
if filename.startswith("__") or not filename.endswith(".py") or filename.startswith("base"):
continue
module_name = filename[:-3]
try:
module = importlib.import_module(f".{module_name}", package=__name__)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {module_name}: {str(e)}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if (inspect.isclass(obj) and
obj.__module__ == module.__name__ and not name.startswith("_")):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _package_path, _import_submodules, _extract_classes_from_module

56
agent/tools/akshare.py Normal file
View File

@@ -0,0 +1,56 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
import akshare as ak
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)

102
agent/tools/arxiv.py Normal file
View File

@@ -0,0 +1,102 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import arxiv
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
class ArXivParam(ToolParamBase):
"""
Define the ArXiv component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "arxiv_search",
"description": """arXiv is a free distribution service and an open-access archive for nearly 2.4 million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics. Materials on this site are not peer-reviewed by arXiv.""",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with arXiv. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 12
self.sort_by = 'submittedDate'
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.sort_by, "ArXiv Search Sort_by",
['submittedDate', 'lastUpdatedDate', 'relevance'])
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class ArXiv(ToolBase, ABC):
component_name = "ArXiv"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
sort_choices = {"relevance": arxiv.SortCriterion.Relevance,
"lastUpdatedDate": arxiv.SortCriterion.LastUpdatedDate,
'submittedDate': arxiv.SortCriterion.SubmittedDate}
arxiv_client = arxiv.Client()
search = arxiv.Search(
query=kwargs["query"],
max_results=self._param.top_n,
sort_by=sort_choices[self._param.sort_by]
)
self._retrieve_chunks(list(arxiv_client.results(search)),
get_title=lambda r: r.title,
get_url=lambda r: r.pdf_url,
get_content=lambda r: r.summary)
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"ArXiv error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"ArXiv error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))

173
agent/tools/base.py Normal file
View File

@@ -0,0 +1,173 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import time
from copy import deepcopy
from functools import partial
from typing import TypedDict, List, Any
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils import hash_str2int
from rag.llm.chat_model import ToolCallSession
from rag.prompts.generator import kb_prompt
from rag.utils.mcp_tool_call_conn import MCPToolCallSession
from timeit import default_timer as timer
class ToolParameter(TypedDict):
type: str
description: str
displayDescription: str
enum: List[str]
required: bool
class ToolMeta(TypedDict):
name: str
displayName: str
description: str
displayDescription: str
parameters: dict[str, ToolParameter]
class LLMToolPluginCallSession(ToolCallSession):
def __init__(self, tools_map: dict[str, object], callback: partial):
self.tools_map = tools_map
self.callback = callback
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
assert name in self.tools_map, f"LLM tool {name} does not exist"
st = timer()
if isinstance(self.tools_map[name], MCPToolCallSession):
resp = self.tools_map[name].tool_call(name, arguments, 60)
else:
resp = self.tools_map[name].invoke(**arguments)
self.callback(name, arguments, resp, elapsed_time=timer()-st)
return resp
def get_tool_obj(self, name):
return self.tools_map[name]
class ToolParamBase(ComponentParamBase):
def __init__(self):
#self.meta:ToolMeta = None
super().__init__()
self._init_inputs()
self._init_attr_by_meta()
def _init_inputs(self):
self.inputs = {}
for k,p in self.meta["parameters"].items():
self.inputs[k] = deepcopy(p)
def _init_attr_by_meta(self):
for k,p in self.meta["parameters"].items():
if not hasattr(self, k):
setattr(self, k, p.get("default"))
def get_meta(self):
params = {}
for k, p in self.meta["parameters"].items():
params[k] = {
"type": p["type"],
"description": p["description"]
}
if "enum" in p:
params[k]["enum"] = p["enum"]
desc = self.meta["description"]
if hasattr(self, "description"):
desc = self.description
function_name = self.meta["name"]
if hasattr(self, "function_name"):
function_name = self.function_name
return {
"type": "function",
"function": {
"name": function_name,
"description": desc,
"parameters": {
"type": "object",
"properties": params,
"required": [k for k, p in self.meta["parameters"].items() if p["required"]]
}
}
}
class ToolBase(ComponentBase):
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
self._param.check()
def get_meta(self) -> dict[str, Any]:
return self._param.get_meta()
def invoke(self, **kwargs):
self.set_output("_created_time", time.perf_counter())
try:
res = self._invoke(**kwargs)
except Exception as e:
self._param.outputs["_ERROR"] = {"value": str(e)}
logging.exception(e)
res = str(e)
self._param.debug_inputs = []
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return res
def _retrieve_chunks(self, res_list: list, get_title, get_url, get_content, get_score=None):
chunks = []
aggs = []
for r in res_list:
content = get_content(r)
if not content:
continue
content = re.sub(r"!?\[[a-z]+\]\(data:image/png;base64,[ 0-9A-Za-z/_=+-]+\)", "", content)
content = content[:10000]
if not content:
continue
id = str(hash_str2int(content))
title = get_title(r)
url = get_url(r)
score = get_score(r) if get_score else 1
chunks.append({
"chunk_id": id,
"content": content,
"doc_id": id,
"docnm_kwd": title,
"similarity": score,
"url": url
})
aggs.append({
"doc_name": title,
"doc_id": id,
"count": 1,
"url": url
})
self._canvas.add_reference(chunks, aggs)
self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True)))
def thoughts(self) -> str:
return self._canvas.get_component_name(self._id) + " is running..."

201
agent/tools/code_exec.py Normal file
View File

@@ -0,0 +1,201 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
import logging
import os
from abc import ABC
from strenum import StrEnum
from typing import Optional
from pydantic import BaseModel, Field, field_validator
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api import settings
from api.utils.api_utils import timeout
class Language(StrEnum):
PYTHON = "python"
NODEJS = "nodejs"
class CodeExecutionRequest(BaseModel):
code_b64: str = Field(..., description="Base64 encoded code string")
language: str = Field(default=Language.PYTHON.value, description="Programming language")
arguments: Optional[dict] = Field(default={}, description="Arguments")
@field_validator("code_b64")
@classmethod
def validate_base64(cls, v: str) -> str:
try:
base64.b64decode(v, validate=True)
return v
except Exception as e:
raise ValueError(f"Invalid base64 encoding: {str(e)}")
@field_validator("language", mode="before")
@classmethod
def normalize_language(cls, v) -> str:
if isinstance(v, str):
low = v.lower()
if low in ("python", "python3"):
return "python"
elif low in ("javascript", "nodejs"):
return "nodejs"
raise ValueError(f"Unsupported language: {v}")
class CodeExecParam(ToolParamBase):
"""
Define the code sandbox component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "execute_code",
"description": """
This tool has a sandbox that can execute code written in 'Python'/'Javascript'. It recieves a piece of code and return a Json string.
Here's a code example for Python(`main` function MUST be included):
def main() -> dict:
\"\"\"
Generate Fibonacci numbers within 100.
\"\"\"
def fibonacci_recursive(n):
if n <= 1:
return n
else:
return fibonacci_recursive(n-1) + fibonacci_recursive(n-2)
return {
"result": fibonacci_recursive(100),
}
Here's a code example for Javascript(`main` function MUST be included and exported):
const axios = require('axios');
async function main(args) {
try {
const response = await axios.get('https://github.com/infiniflow/ragflow');
console.log('Body:', response.data);
} catch (error) {
console.error('Error:', error.message);
}
}
module.exports = { main };
""",
"parameters": {
"lang": {
"type": "string",
"description": "The programming language of this piece of code.",
"enum": ["python", "javascript"],
"required": True,
},
"script": {
"type": "string",
"description": "A piece of code in right format. There MUST be main function.",
"required": True
}
}
}
super().__init__()
self.lang = Language.PYTHON.value
self.script = "def main(arg1: str, arg2: str) -> dict: return {\"result\": arg1 + arg2}"
self.arguments = {}
self.outputs = {"result": {"value": "", "type": "string"}}
def check(self):
self.check_valid_value(self.lang, "Support languages", ["python", "python3", "nodejs", "javascript"])
self.check_empty(self.script, "Script")
def get_input_form(self) -> dict[str, dict]:
res = {}
for k, v in self.arguments.items():
res[k] = {
"type": "line",
"name": k
}
return res
class CodeExec(ToolBase, ABC):
component_name = "CodeExec"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
lang = kwargs.get("lang", self._param.lang)
script = kwargs.get("script", self._param.script)
arguments = {}
for k, v in self._param.arguments.items():
if kwargs.get(k):
arguments[k] = kwargs[k]
continue
arguments[k] = self._canvas.get_variable_value(v) if v else None
self._execute_code(
language=lang,
code=script,
arguments=arguments
)
def _execute_code(self, language: str, code: str, arguments: dict):
import requests
try:
code_b64 = self._encode_code(code)
code_req = CodeExecutionRequest(code_b64=code_b64, language=language, arguments=arguments).model_dump()
except Exception as e:
self.set_output("_ERROR", "construct code request error: " + str(e))
try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:")
if resp.status_code != 200:
resp.raise_for_status()
body = resp.json()
if body:
stderr = body.get("stderr")
if stderr:
self.set_output("_ERROR", stderr)
return
try:
rt = eval(body.get("stdout", ""))
except Exception:
rt = body.get("stdout", "")
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run -> {rt}")
if isinstance(rt, tuple):
for i, (k, o) in enumerate(self._param.outputs.items()):
if k.find("_") == 0:
continue
o["value"] = rt[i]
elif isinstance(rt, dict):
for i, (k, o) in enumerate(self._param.outputs.items()):
if k not in rt or k.find("_") == 0:
continue
o["value"] = rt[k]
else:
for i, (k, o) in enumerate(self._param.outputs.items()):
if k.find("_") == 0:
continue
o["value"] = rt
else:
self.set_output("_ERROR", "There is no response from sandbox")
except Exception as e:
self.set_output("_ERROR", "Exception executing code: " + str(e))
return self.output()
def _encode_code(self, code: str) -> str:
return base64.b64encode(code.encode("utf-8")).decode("utf-8")
def thoughts(self) -> str:
return "Running a short script to process data."

68
agent/tools/crawler.py Normal file
View File

@@ -0,0 +1,68 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import asyncio
from crawl4ai import AsyncWebCrawler
from agent.tools.base import ToolParamBase, ToolBase
class CrawlerParam(ToolParamBase):
"""
Define the Crawler component parameters.
"""
def __init__(self):
super().__init__()
self.proxy = None
self.extract_type = "markdown"
def check(self):
self.check_valid_value(self.extract_type, "Type of content from the crawler", ['html', 'markdown', 'content'])
class Crawler(ToolBase, ABC):
component_name = "Crawler"
def _run(self, history, **kwargs):
from api.utils.web_utils import is_valid_url
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):
return Crawler.be_output("URL not valid")
try:
result = asyncio.run(self.get_web(ans))
return Crawler.be_output(result)
except Exception as e:
return Crawler.be_output(f"An unexpected error occurred: {str(e)}")
async def get_web(self, url):
proxy = self._param.proxy if self._param.proxy else None
async with AsyncWebCrawler(verbose=True, proxy=proxy) as crawler:
result = await crawler.arun(
url=url,
bypass_cache=True
)
if self._param.extract_type == 'html':
return result.cleaned_html
elif self._param.extract_type == 'markdown':
return result.markdown
elif self._param.extract_type == 'content':
return result.extracted_content
return result.markdown

61
agent/tools/deepl.py Normal file
View File

@@ -0,0 +1,61 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
import deepl
class DeepLParam(ComponentParamBase):
"""
Define the DeepL component parameters.
"""
def __init__(self):
super().__init__()
self.auth_key = "xxx"
self.parameters = []
self.source_lang = 'ZH'
self.target_lang = 'EN-GB'
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.source_lang, "Source language",
['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN', 'ES', 'ET', 'FI', 'FR', 'HU', 'ID', 'IT',
'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT', 'RO', 'RU', 'SK', 'SL', 'SV', 'TR',
'UK', 'ZH'])
self.check_valid_value(self.target_lang, "Target language",
['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN-GB', 'EN-US', 'ES', 'ET', 'FI', 'FR', 'HU',
'ID', 'IT', 'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT-BR', 'PT-PT', 'RO', 'RU',
'SK', 'SL', 'SV', 'TR', 'UK', 'ZH'])
class DeepL(ComponentBase, ABC):
component_name = "DeepL"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return DeepL.be_output("")
try:
translator = deepl.Translator(self._param.auth_key)
result = translator.translate_text(ans, source_lang=self._param.source_lang,
target_lang=self._param.target_lang)
return DeepL.be_output(result.text)
except Exception as e:
DeepL.be_output("**Error**:" + str(e))

120
agent/tools/duckduckgo.py Normal file
View File

@@ -0,0 +1,120 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
from duckduckgo_search import DDGS
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class DuckDuckGoParam(ToolParamBase):
"""
Define the DuckDuckGo component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "duckduckgo_search",
"description": "DuckDuckGo is a search engine focused on privacy. It offers search capabilities for web pages, images, and provides translation services. DuckDuckGo also features a private AI chat interface, providing users with an AI assistant that prioritizes data protection.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with DuckDuckGo. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"channel": {
"type": "string",
"description": "default:general. The category of the search. `news` is useful for retrieving real-time updates, particularly about politics, sports, and major current events covered by mainstream media sources. `general` is for broader, more general-purpose searches that may include a wide range of sources.",
"enum": ["general", "news"],
"default": "general",
"required": False,
},
}
}
super().__init__()
self.top_n = 10
self.channel = "text"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.channel, "Web Search or News", ["text", "news"])
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"channel": {
"name": "Channel",
"type": "options",
"value": "general",
"options": ["general", "news"]
}
}
class DuckDuckGo(ToolBase, ABC):
component_name = "DuckDuckGo"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
if kwargs.get("topic", "general") == "general":
with DDGS() as ddgs:
# {'title': '', 'href': '', 'body': ''}
duck_res = ddgs.text(kwargs["query"], max_results=self._param.top_n)
self._retrieve_chunks(duck_res,
get_title=lambda r: r["title"],
get_url=lambda r: r.get("href", r.get("url")),
get_content=lambda r: r["body"])
self.set_output("json", duck_res)
return self.output("formalized_content")
else:
with DDGS() as ddgs:
# {'date': '', 'title': '', 'body': '', 'url': '', 'image': '', 'source': ''}
duck_res = ddgs.news(kwargs["query"], max_results=self._param.top_n)
self._retrieve_chunks(duck_res,
get_title=lambda r: r["title"],
get_url=lambda r: r.get("href", r.get("url")),
get_content=lambda r: r["body"])
self.set_output("json", duck_res)
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"DuckDuckGo error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"DuckDuckGo error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))

215
agent/tools/email.py Normal file
View File

@@ -0,0 +1,215 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
from abc import ABC
import json
import smtplib
import logging
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from email.utils import formataddr
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
class EmailParam(ToolParamBase):
"""
Define the Email component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "email",
"description": "The email is a method of electronic communication for sending and receiving information through the Internet. This tool helps users to send emails to one person or to multiple recipients with support for CC, BCC, file attachments, and markdown-to-HTML conversion.",
"parameters": {
"to_email": {
"type": "string",
"description": "The target email address.",
"default": "{sys.query}",
"required": True
},
"cc_email": {
"type": "string",
"description": "The other email addresses needs to be send to. Comma splited.",
"default": "",
"required": False
},
"content": {
"type": "string",
"description": "The content of the email.",
"default": "",
"required": False
},
"subject": {
"type": "string",
"description": "The subject/title of the email.",
"default": "",
"required": False
}
}
}
super().__init__()
# Fixed configuration parameters
self.smtp_server = "" # SMTP server address
self.smtp_port = 465 # SMTP port
self.email = "" # Sender email
self.password = "" # Email authorization code
self.sender_name = "" # Sender name
def check(self):
# Check required parameters
self.check_empty(self.smtp_server, "SMTP Server")
self.check_empty(self.email, "Email")
self.check_empty(self.password, "Password")
self.check_empty(self.sender_name, "Sender Name")
def get_input_form(self) -> dict[str, dict]:
return {
"to_email": {
"name": "To ",
"type": "line"
},
"subject": {
"name": "Subject",
"type": "line",
"optional": True
},
"cc_email": {
"name": "CC To",
"type": "line",
"optional": True
},
}
class Email(ToolBase, ABC):
component_name = "Email"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("to_email"):
self.set_output("success", False)
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
# Parse JSON string passed from upstream
email_data = kwargs
# Validate required fields
if "to_email" not in email_data:
return Email.be_output("Missing required field: to_email")
# Create email object
msg = MIMEMultipart('alternative')
# Properly handle sender name encoding
msg['From'] = formataddr((str(Header(self._param.sender_name,'utf-8')), self._param.email))
msg['To'] = email_data["to_email"]
if email_data.get("cc_email"):
msg['Cc'] = email_data["cc_email"]
msg['Subject'] = Header(email_data.get("subject", "No Subject"), 'utf-8').encode()
# Use content from email_data or default content
email_content = email_data.get("content", "No content provided")
# msg.attach(MIMEText(email_content, 'plain', 'utf-8'))
msg.attach(MIMEText(email_content, 'html', 'utf-8'))
# Connect to SMTP server and send
logging.info(f"Connecting to SMTP server {self._param.smtp_server}:{self._param.smtp_port}")
context = smtplib.ssl.create_default_context()
with smtplib.SMTP(self._param.smtp_server, self._param.smtp_port) as server:
server.ehlo()
server.starttls(context=context)
server.ehlo()
# Login
logging.info(f"Attempting to login with email: {self._param.email}")
server.login(self._param.email, self._param.password)
# Get all recipient list
recipients = [email_data["to_email"]]
if email_data.get("cc_email"):
recipients.extend(email_data["cc_email"].split(','))
# Send email
logging.info(f"Sending email to recipients: {recipients}")
try:
server.send_message(msg, self._param.email, recipients)
success = True
except Exception as e:
logging.error(f"Error during send_message: {str(e)}")
# Try alternative method
server.sendmail(self._param.email, recipients, msg.as_string())
success = True
try:
server.quit()
except Exception as e:
# Ignore errors when closing connection
logging.warning(f"Non-fatal error during connection close: {str(e)}")
self.set_output("success", success)
return success
except json.JSONDecodeError:
error_msg = "Invalid JSON format in input"
logging.error(error_msg)
self.set_output("_ERROR", error_msg)
self.set_output("success", False)
return False
except smtplib.SMTPAuthenticationError:
error_msg = "SMTP Authentication failed. Please check your email and authorization code."
logging.error(error_msg)
self.set_output("_ERROR", error_msg)
self.set_output("success", False)
return False
except smtplib.SMTPConnectError:
error_msg = f"Failed to connect to SMTP server {self._param.smtp_server}:{self._param.smtp_port}"
logging.error(error_msg)
last_e = error_msg
time.sleep(self._param.delay_after_error)
except smtplib.SMTPException as e:
error_msg = f"SMTP error occurred: {str(e)}"
logging.error(error_msg)
last_e = error_msg
time.sleep(self._param.delay_after_error)
except Exception as e:
error_msg = f"Unexpected error: {str(e)}"
logging.error(error_msg)
self.set_output("_ERROR", error_msg)
self.set_output("success", False)
return False
if last_e:
self.set_output("_ERROR", str(last_e))
return False
assert False, self.output()
def thoughts(self) -> str:
inputs = self.get_input()
return """
To: {}
Subject: {}
Your email is on its way—sit tight!
""".format(inputs.get("to_email", "-_-!"), inputs.get("subject", "-_-!"))

212
agent/tools/exesql.py Normal file
View File

@@ -0,0 +1,212 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import re
from abc import ABC
import pandas as pd
import pymysql
import psycopg2
import pyodbc
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
class ExeSQLParam(ToolParamBase):
"""
Define the ExeSQL component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "execute_sql",
"description": "This is a tool that can execute SQL.",
"parameters": {
"sql": {
"type": "string",
"description": "The SQL needs to be executed.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.db_type = "mysql"
self.database = ""
self.username = ""
self.host = ""
self.port = 3306
self.password = ""
self.max_records = 1024
def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
self.check_positive_integer(self.port, "IP Port")
self.check_empty(self.password, "Database password")
self.check_positive_integer(self.max_records, "Maximum number of records")
if self.database == "rag_flow":
if self.host == "ragflow-mysql":
raise ValueError("For the security reason, it dose not support database named rag_flow.")
if self.password == "infini_rag_flow":
raise ValueError("For the security reason, it dose not support database named rag_flow.")
def get_input_form(self) -> dict[str, dict]:
return {
"sql": {
"name": "SQL",
"type": "line"
}
}
class ExeSQL(ToolBase, ABC):
component_name = "ExeSQL"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
def convert_decimals(obj):
from decimal import Decimal
if isinstance(obj, Decimal):
return float(obj) # 或 str(obj)
elif isinstance(obj, dict):
return {k: convert_decimals(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_decimals(item) for item in obj]
return obj
sql = kwargs.get("sql")
if not sql:
raise Exception("SQL for `ExeSQL` MUST not be empty.")
vars = self.get_input_elements_from_text(sql)
args = {}
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
try:
args[k] = json.dumps(args[k], ensure_ascii=False)
except Exception:
args[k] = str(args[k])
self.set_input_value(k, args[k])
sql = self.string_format(sql, args)
sqls = sql.split(";")
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'postgres':
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
conn_str = (
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
elif self._param.db_type == 'IBM DB2':
import ibm_db
conn_str = (
f"DATABASE={self._param.database};"
f"HOSTNAME={self._param.host};"
f"PORT={self._param.port};"
f"PROTOCOL=TCPIP;"
f"UID={self._param.username};"
f"PWD={self._param.password};"
)
try:
conn = ibm_db.connect(conn_str, "", "")
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
sql_res = []
formalized_content = []
for single_sql in sqls:
single_sql = single_sql.replace("```", "").strip()
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
stmt = ibm_db.exec_immediate(conn, single_sql)
rows = []
row = ibm_db.fetch_assoc(stmt)
while row and len(rows) < self._param.max_records:
rows.append(row)
row = ibm_db.fetch_assoc(stmt)
if not rows:
sql_res.append({"content": "No record in the database!"})
continue
df = pd.DataFrame(rows)
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.strftime("%Y-%m-%d")
df = df.where(pd.notnull(df), None)
sql_res.append(convert_decimals(df.to_dict(orient="records")))
formalized_content.append(df.to_markdown(index=False, floatfmt=".6f"))
ibm_db.close(conn)
self.set_output("json", sql_res)
self.set_output("formalized_content", "\n\n".join(formalized_content))
return self.output("formalized_content")
try:
cursor = db.cursor()
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
sql_res = []
formalized_content = []
for single_sql in sqls:
single_sql = single_sql.replace('```','')
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
break
if self._param.db_type == 'mssql':
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.max_records),
columns=[desc[0] for desc in cursor.description])
else:
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.max_records)])
single_res.columns = [i[0] for i in cursor.description]
for col in single_res.columns:
if pd.api.types.is_datetime64_any_dtype(single_res[col]):
single_res[col] = single_res[col].dt.strftime('%Y-%m-%d')
single_res = single_res.where(pd.notnull(single_res), None)
sql_res.append(convert_decimals(single_res.to_dict(orient='records')))
formalized_content.append(single_res.to_markdown(index=False, floatfmt=".6f"))
self.set_output("json", sql_res)
self.set_output("formalized_content", "\n\n".join(formalized_content))
return self.output("formalized_content")
def thoughts(self) -> str:
return "Query sent—waiting for the data."

91
agent/tools/github.py Normal file
View File

@@ -0,0 +1,91 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
class GitHubParam(ToolParamBase):
"""
Define the GitHub component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "github_search",
"description": """GitHub repository search is a feature that enables users to find specific repositories on the GitHub platform. This search functionality allows users to locate projects, codebases, and other content hosted on GitHub based on various criteria.""",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with GitHub. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class GitHub(ToolBase, ABC):
component_name = "GitHub"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
url = 'https://api.github.com/search/repositories?q=' + kwargs["query"] + '&sort=stars&order=desc&per_page=' + str(
self._param.top_n)
headers = {"Content-Type": "application/vnd.github+json", "X-GitHub-Api-Version": '2022-11-28'}
response = requests.get(url=url, headers=headers).json()
self._retrieve_chunks(response['items'],
get_title=lambda r: r["name"],
get_url=lambda r: r["html_url"],
get_content=lambda r: str(r["description"]) + '\n stars:' + str(r['watchers']))
self.set_output("json", response['items'])
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"GitHub error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"GitHub error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Scanning GitHub repos related to `{}`.".format(self.get_input().get("query", "-_-!"))

159
agent/tools/google.py Normal file
View File

@@ -0,0 +1,159 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
from serpapi import GoogleSearch
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
class GoogleParam(ToolParamBase):
"""
Define the Google component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "google_search",
"description": """Search the world's information, including webpages, images, videos and more. Google has many special features to help you find exactly what you're looking ...""",
"parameters": {
"q": {
"type": "string",
"description": "The search keywords to execute with Google. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"start": {
"type": "integer",
"description": "Parameter defines the result offset. It skips the given number of results. It's used for pagination. (e.g., 0 (default) is the first page of results, 10 is the 2nd page of results, 20 is the 3rd page of results, etc.). Google Local Results only accepts multiples of 20(e.g. 20 for the second page results, 40 for the third page results, etc.) as the `start` value.",
"default": "0",
"required": False,
},
"num": {
"type": "integer",
"description": "Parameter defines the maximum number of results to return. (e.g., 10 (default) returns 10 results, 40 returns 40 results, and 100 returns 100 results). The use of num may introduce latency, and/or prevent the inclusion of specialized result types. It is better to omit this parameter unless it is strictly necessary to increase the number of results per page. Results are not guaranteed to have the number of results specified in num.",
"default": "6",
"required": False,
}
}
}
super().__init__()
self.start = 0
self.num = 6
self.api_key = ""
self.country = "cn"
self.language = "en"
def check(self):
self.check_empty(self.api_key, "SerpApi API key")
self.check_valid_value(self.country, "Google Country",
['af', 'al', 'dz', 'as', 'ad', 'ao', 'ai', 'aq', 'ag', 'ar', 'am', 'aw', 'au', 'at',
'az', 'bs', 'bh', 'bd', 'bb', 'by', 'be', 'bz', 'bj', 'bm', 'bt', 'bo', 'ba', 'bw',
'bv', 'br', 'io', 'bn', 'bg', 'bf', 'bi', 'kh', 'cm', 'ca', 'cv', 'ky', 'cf', 'td',
'cl', 'cn', 'cx', 'cc', 'co', 'km', 'cg', 'cd', 'ck', 'cr', 'ci', 'hr', 'cu', 'cy',
'cz', 'dk', 'dj', 'dm', 'do', 'ec', 'eg', 'sv', 'gq', 'er', 'ee', 'et', 'fk', 'fo',
'fj', 'fi', 'fr', 'gf', 'pf', 'tf', 'ga', 'gm', 'ge', 'de', 'gh', 'gi', 'gr', 'gl',
'gd', 'gp', 'gu', 'gt', 'gn', 'gw', 'gy', 'ht', 'hm', 'va', 'hn', 'hk', 'hu', 'is',
'in', 'id', 'ir', 'iq', 'ie', 'il', 'it', 'jm', 'jp', 'jo', 'kz', 'ke', 'ki', 'kp',
'kr', 'kw', 'kg', 'la', 'lv', 'lb', 'ls', 'lr', 'ly', 'li', 'lt', 'lu', 'mo', 'mk',
'mg', 'mw', 'my', 'mv', 'ml', 'mt', 'mh', 'mq', 'mr', 'mu', 'yt', 'mx', 'fm', 'md',
'mc', 'mn', 'ms', 'ma', 'mz', 'mm', 'na', 'nr', 'np', 'nl', 'an', 'nc', 'nz', 'ni',
'ne', 'ng', 'nu', 'nf', 'mp', 'no', 'om', 'pk', 'pw', 'ps', 'pa', 'pg', 'py', 'pe',
'ph', 'pn', 'pl', 'pt', 'pr', 'qa', 're', 'ro', 'ru', 'rw', 'sh', 'kn', 'lc', 'pm',
'vc', 'ws', 'sm', 'st', 'sa', 'sn', 'rs', 'sc', 'sl', 'sg', 'sk', 'si', 'sb', 'so',
'za', 'gs', 'es', 'lk', 'sd', 'sr', 'sj', 'sz', 'se', 'ch', 'sy', 'tw', 'tj', 'tz',
'th', 'tl', 'tg', 'tk', 'to', 'tt', 'tn', 'tr', 'tm', 'tc', 'tv', 'ug', 'ua', 'ae',
'uk', 'gb', 'us', 'um', 'uy', 'uz', 'vu', 've', 'vn', 'vg', 'vi', 'wf', 'eh', 'ye',
'zm', 'zw'])
self.check_valid_value(self.language, "Google languages",
['af', 'ak', 'sq', 'ws', 'am', 'ar', 'hy', 'az', 'eu', 'be', 'bem', 'bn', 'bh',
'xx-bork', 'bs', 'br', 'bg', 'bt', 'km', 'ca', 'chr', 'ny', 'zh-cn', 'zh-tw', 'co',
'hr', 'cs', 'da', 'nl', 'xx-elmer', 'en', 'eo', 'et', 'ee', 'fo', 'tl', 'fi', 'fr',
'fy', 'gaa', 'gl', 'ka', 'de', 'el', 'kl', 'gn', 'gu', 'xx-hacker', 'ht', 'ha', 'haw',
'iw', 'hi', 'hu', 'is', 'ig', 'id', 'ia', 'ga', 'it', 'ja', 'jw', 'kn', 'kk', 'rw',
'rn', 'xx-klingon', 'kg', 'ko', 'kri', 'ku', 'ckb', 'ky', 'lo', 'la', 'lv', 'ln', 'lt',
'loz', 'lg', 'ach', 'mk', 'mg', 'ms', 'ml', 'mt', 'mv', 'mi', 'mr', 'mfe', 'mo', 'mn',
'sr-me', 'my', 'ne', 'pcm', 'nso', 'no', 'nn', 'oc', 'or', 'om', 'ps', 'fa',
'xx-pirate', 'pl', 'pt', 'pt-br', 'pt-pt', 'pa', 'qu', 'ro', 'rm', 'nyn', 'ru', 'gd',
'sr', 'sh', 'st', 'tn', 'crs', 'sn', 'sd', 'si', 'sk', 'sl', 'so', 'es', 'es-419', 'su',
'sw', 'sv', 'tg', 'ta', 'tt', 'te', 'th', 'ti', 'to', 'lua', 'tum', 'tr', 'tk', 'tw',
'ug', 'uk', 'ur', 'uz', 'vu', 'vi', 'cy', 'wo', 'xh', 'yi', 'yo', 'zu']
)
def get_input_form(self) -> dict[str, dict]:
return {
"q": {
"name": "Query",
"type": "line"
},
"start": {
"name": "From",
"type": "integer",
"value": 0
},
"num": {
"name": "Limit",
"type": "integer",
"value": 12
}
}
class Google(ToolBase, ABC):
component_name = "Google"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("q"):
self.set_output("formalized_content", "")
return ""
params = {
"api_key": self._param.api_key,
"engine": "google",
"q": kwargs["q"],
"google_domain": "google.com",
"gl": self._param.country,
"hl": self._param.language
}
last_e = ""
for _ in range(self._param.max_retries+1):
try:
search = GoogleSearch(params).get_dict()
self._retrieve_chunks(search["organic_results"],
get_title=lambda r: r["title"],
get_url=lambda r: r["link"],
get_content=lambda r: r.get("about_this_result", {}).get("source", {}).get("description", r["snippet"])
)
self.set_output("json", search["organic_results"])
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"Google error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"Google error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))

View File

@@ -0,0 +1,96 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
from scholarly import scholarly
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class GoogleScholarParam(ToolParamBase):
"""
Define the GoogleScholar component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "google_scholar_search",
"description": """Google Scholar provides a simple way to broadly search for scholarly literature. From one place, you can search across many disciplines and sources: articles, theses, books, abstracts and court opinions, from academic publishers, professional societies, online repositories, universities and other web sites. Google Scholar helps you find relevant work across the world of scholarly research.""",
"parameters": {
"query": {
"type": "string",
"description": "The search keyword to execute with Google Scholar. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 12
self.sort_by = 'relevance'
self.year_low = None
self.year_high = None
self.patents = True
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.sort_by, "GoogleScholar Sort_by", ['date', 'relevance'])
self.check_boolean(self.patents, "Whether or not to include patents, defaults to True")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class GoogleScholar(ToolBase, ABC):
component_name = "GoogleScholar"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
scholar_client = scholarly.search_pubs(kwargs["query"], patents=self._param.patents, year_low=self._param.year_low,
year_high=self._param.year_high, sort_by=self._param.sort_by)
self._retrieve_chunks(scholar_client,
get_title=lambda r: r['bib']['title'],
get_url=lambda r: r["pub_url"],
get_content=lambda r: "\n author: " + ",".join(r['bib']['author']) + '\n Abstract: ' + r['bib'].get('abstract', 'no abstract')
)
self.set_output("json", list(scholar_client))
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"GoogleScholar error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"GoogleScholar error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))

130
agent/tools/jin10.py Normal file
View File

@@ -0,0 +1,130 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)

108
agent/tools/pubmed.py Normal file
View File

@@ -0,0 +1,108 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
from Bio import Entrez
import re
import xml.etree.ElementTree as ET
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
class PubMedParam(ToolParamBase):
"""
Define the PubMed component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "pubmed_search",
"description": """
PubMed is an openly accessible, free database which includes primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics.
In addition to MEDLINE, PubMed provides access to:
- older references from the print version of Index Medicus, back to 1951 and earlier
- references to some journals before they were indexed in Index Medicus and MEDLINE, for instance Science, BMJ, and Annals of Surgery
- very recent entries to records for an article before it is indexed with Medical Subject Headings (MeSH) and added to MEDLINE
- a collection of books available full-text and other subsets of NLM records[4]
- PMC citations
- NCBI Bookshelf
""",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with PubMed. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 12
self.email = "A.N.Other@example.com"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class PubMed(ToolBase, ABC):
component_name = "PubMed"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
Entrez.email = self._param.email
pubmedids = Entrez.read(Entrez.esearch(db='pubmed', retmax=self._param.top_n, term=kwargs["query"]))['IdList']
pubmedcnt = ET.fromstring(re.sub(r'<(/?)b>|<(/?)i>', '', Entrez.efetch(db='pubmed', id=",".join(pubmedids),
retmode="xml").read().decode("utf-8")))
self._retrieve_chunks(pubmedcnt.findall("PubmedArticle"),
get_title=lambda child: child.find("MedlineCitation").find("Article").find("ArticleTitle").text,
get_url=lambda child: "https://pubmed.ncbi.nlm.nih.gov/" + child.find("MedlineCitation").find("PMID").text,
get_content=lambda child: child.find("MedlineCitation") \
.find("Article") \
.find("Abstract") \
.find("AbstractText").text \
if child.find("MedlineCitation")\
.find("Article").find("Abstract") \
else "No abstract available")
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"PubMed error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"PubMed error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))

111
agent/tools/qweather.py Normal file
View File

@@ -0,0 +1,111 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class QWeatherParam(ComponentParamBase):
"""
Define the QWeather component parameters.
"""
def __init__(self):
super().__init__()
self.web_apikey = "xxx"
self.lang = "zh"
self.type = "weather"
self.user_type = 'free'
self.error_code = {
"204": "The request was successful, but the region you are querying does not have the data you need at this time.",
"400": "Request error, may contain incorrect request parameters or missing mandatory request parameters.",
"401": "Authentication fails, possibly using the wrong KEY, wrong digital signature, wrong type of KEY (e.g. using the SDK's KEY to access the Web API).",
"402": "Exceeded the number of accesses or the balance is not enough to support continued access to the service, you can recharge, upgrade the accesses or wait for the accesses to be reset.",
"403": "No access, may be the binding PackageName, BundleID, domain IP address is inconsistent, or the data that requires additional payment.",
"404": "The queried data or region does not exist.",
"429": "Exceeded the limited QPM (number of accesses per minute), please refer to the QPM description",
"500": "No response or timeout, interface service abnormality please contact us"
}
# Weather
self.time_period = 'now'
def check(self):
self.check_empty(self.web_apikey, "BaiduFanyi APPID")
self.check_valid_value(self.type, "Type", ["weather", "indices", "airquality"])
self.check_valid_value(self.user_type, "Free subscription or paid subscription", ["free", "paid"])
self.check_valid_value(self.lang, "Use language",
['zh', 'zh-hant', 'en', 'de', 'es', 'fr', 'it', 'ja', 'ko', 'ru', 'hi', 'th', 'ar', 'pt',
'bn', 'ms', 'nl', 'el', 'la', 'sv', 'id', 'pl', 'tr', 'cs', 'et', 'vi', 'fil', 'fi',
'he', 'is', 'nb'])
self.check_valid_value(self.time_period, "Time period", ['now', '3d', '7d', '10d', '15d', '30d'])
class QWeather(ComponentBase, ABC):
component_name = "QWeather"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return QWeather.be_output("")
try:
response = requests.get(
url="https://geoapi.qweather.com/v2/city/lookup?location=" + ans + "&key=" + self._param.web_apikey).json()
if response["code"] == "200":
location_id = response["location"][0]["id"]
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
base_url = "https://api.qweather.com/v7/" if self._param.user_type == 'paid' else "https://devapi.qweather.com/v7/"
if self._param.type == "weather":
url = base_url + "weather/" + self._param.time_period + "?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
if self._param.time_period == "now":
return QWeather.be_output(str(response["now"]))
else:
qweather_res = [{"content": str(i) + "\n"} for i in response["daily"]]
if not qweather_res:
return QWeather.be_output("")
df = pd.DataFrame(qweather_res)
return df
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
elif self._param.type == "indices":
url = base_url + "indices/1d?type=0&location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
indices_res = response["daily"][0]["date"] + "\n" + "\n".join(
[i["name"] + ": " + i["category"] + ", " + i["text"] for i in response["daily"]])
return QWeather.be_output(indices_res)
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
elif self._param.type == "airquality":
url = base_url + "air/now?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
return QWeather.be_output(str(response["now"]))
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
except Exception as e:
return QWeather.be_output("**Error**" + str(e))

181
agent/tools/retrieval.py Normal file
View File

@@ -0,0 +1,181 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
from abc import ABC
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import timeout
from rag.app.tag import label_question
from rag.prompts.generator import cross_languages, kb_prompt
class RetrievalParam(ToolParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "search_my_dateset",
"description": "This tool can be utilized for relevant content searching in the datasets.",
"parameters": {
"query": {
"type": "string",
"description": "The keywords to search the dataset. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "",
"required": True
}
}
}
super().__init__()
self.function_name = "search_my_dateset"
self.description = "This tool can be utilized for relevant content searching in the datasets."
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.kb_vars = []
self.rerank_id = ""
self.empty_response = ""
self.use_kg = False
self.cross_languages = []
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class Retrieval(ToolBase, ABC):
component_name = "Retrieval"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", self._param.empty_response)
kb_ids: list[str] = []
for id in self._param.kb_ids:
if id.find("@") < 0:
kb_ids.append(id)
continue
kb_nm = self._canvas.get_variable_value(id)
# if kb_nm is a list
kb_nm_list = kb_nm if isinstance(kb_nm, list) else [kb_nm]
for nm_or_id in kb_nm_list:
e, kb = KnowledgebaseService.get_by_name(nm_or_id,
self._canvas._tenant_id)
if not e:
e, kb = KnowledgebaseService.get_by_id(nm_or_id)
if not e:
raise Exception(f"Dataset({nm_or_id}) does not exist.")
kb_ids.append(kb.id)
filtered_kb_ids: list[str] = list(set([kb_id for kb_id in kb_ids if kb_id]))
kbs = KnowledgebaseService.get_by_ids(filtered_kb_ids)
if not kbs:
raise Exception("No dataset is selected.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = None
if embd_nms:
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
vars = self.get_input_elements_from_text(kwargs["query"])
vars = {k:o["value"] for k,o in vars.items()}
query = self.string_format(kwargs["query"], vars)
if self._param.cross_languages:
query = cross_languages(kbs[0].tenant_id, None, query, self._param.cross_languages)
if kbs:
query = re.sub(r"^user[:\s]*", "", query, flags=re.IGNORECASE)
kbinfos = settings.retrievaler.retrieval(
query,
embd_mdl,
[kb.tenant_id for kb in kbs],
filtered_kb_ids,
1,
self._param.top_n,
self._param.similarity_threshold,
1 - self._param.keywords_similarity_weight,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs),
)
if self._param.use_kg:
ck = settings.kg_retrievaler.retrieval(query,
[kb.tenant_id for kb in kbs],
kb_ids,
embd_mdl,
LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ck["content"] = ck["content_with_weight"]
del ck["content_with_weight"]
kbinfos["chunks"].insert(0, ck)
for ck in kbinfos["chunks"]:
if "vector" in ck:
del ck["vector"]
if "content_ltks" in ck:
del ck["content_ltks"]
if not kbinfos["chunks"]:
self.set_output("formalized_content", self._param.empty_response)
return
# Format the chunks for JSON output (similar to how other tools do it)
json_output = kbinfos["chunks"].copy()
self._canvas.add_reference(kbinfos["chunks"], kbinfos["doc_aggs"])
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
# Set both formalized content and JSON output
self.set_output("formalized_content", form_cnt)
self.set_output("json", json_output)
return form_cnt
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))

151
agent/tools/searxng.py Normal file
View File

@@ -0,0 +1,151 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class SearXNGParam(ToolParamBase):
"""
Define the SearXNG component parameters.
"""
def __init__(self):
self.meta: ToolMeta = {
"name": "searxng_search",
"description": "SearXNG is a privacy-focused metasearch engine that aggregates results from multiple search engines without tracking users. It provides comprehensive web search capabilities.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with SearXNG. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"searxng_url": {
"type": "string",
"description": "The base URL of your SearXNG instance (e.g., http://localhost:4000). This is required to connect to your SearXNG server.",
"required": False,
"default": ""
}
}
}
super().__init__()
self.top_n = 10
self.searxng_url = ""
def check(self):
# Keep validation lenient so opening try-run panel won't fail without URL.
# Coerce top_n to int if it comes as string from UI.
try:
if isinstance(self.top_n, str):
self.top_n = int(self.top_n.strip())
except Exception:
pass
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"searxng_url": {
"name": "SearXNG URL",
"type": "line",
"placeholder": "http://localhost:4000"
}
}
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
if not query or not isinstance(query, str) or not query.strip():
self.set_output("formalized_content", "")
return ""
searxng_url = (getattr(self._param, "searxng_url", "") or kwargs.get("searxng_url") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising
if not searxng_url:
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
search_params = {
'q': query,
'format': 'json',
'categories': 'general',
'language': 'auto',
'safesearch': 1,
'pageno': 1
}
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
results = results[:self._param.top_n]
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
except requests.RequestException as e:
last_e = f"Network error: {e}"
logging.exception(f"SearXNG network error: {e}")
time.sleep(self._param.delay_after_error)
except Exception as e:
last_e = str(e)
logging.exception(f"SearXNG error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", last_e)
return f"SearXNG error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

227
agent/tools/tavily.py Normal file
View File

@@ -0,0 +1,227 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
from tavily import TavilyClient
from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
from api.utils.api_utils import timeout
class TavilySearchParam(ToolParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "tavily_search",
"description": """
Tavily is a search engine optimized for LLMs, aimed at efficient, quick and persistent search results.
When searching:
- Start with specific query which should focus on just a single aspect.
- Number of keywords in query should be less than 5.
- Broaden search terms if needed
- Cross-reference information from multiple sources
""",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with Tavily. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"topic": {
"type": "string",
"description": "default:general. The category of the search.news is useful for retrieving real-time updates, particularly about politics, sports, and major current events covered by mainstream media sources. general is for broader, more general-purpose searches that may include a wide range of sources.",
"enum": ["general", "news"],
"default": "general",
"required": False,
},
"include_domains": {
"type": "array",
"description": "default:[]. A list of domains only from which the search results can be included.",
"default": [],
"items": {
"type": "string",
"description": "Domain name that must be included, e.g. www.yahoo.com"
},
"required": False
},
"exclude_domains": {
"type": "array",
"description": "default:[]. A list of domains from which the search results can not be included",
"default": [],
"items": {
"type": "string",
"description": "Domain name that must be excluded, e.g. www.yahoo.com"
},
"required": False
},
}
}
super().__init__()
self.api_key = ""
self.search_depth = "basic" # basic/advanced
self.max_results = 6
self.days = 14
self.include_answer = False
self.include_raw_content = False
self.include_images = False
self.include_image_descriptions = False
def check(self):
self.check_valid_value(self.topic, "Tavily topic: should be in 'general/news'", ["general", "news"])
self.check_valid_value(self.search_depth, "Tavily search depth should be in 'basic/advanced'", ["basic", "advanced"])
self.check_positive_integer(self.max_results, "Tavily max result number should be within [1 20]")
self.check_positive_integer(self.days, "Tavily days should be greater than 1")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class TavilySearch(ToolBase, ABC):
component_name = "TavilySearch"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
self.tavily_client = TavilyClient(api_key=self._param.api_key)
last_e = None
for fld in ["search_depth", "topic", "max_results", "days", "include_answer", "include_raw_content", "include_images", "include_image_descriptions", "include_domains", "exclude_domains"]:
if fld not in kwargs:
kwargs[fld] = getattr(self._param, fld)
for _ in range(self._param.max_retries+1):
try:
kwargs["include_images"] = False
kwargs["include_raw_content"] = False
res = self.tavily_client.search(**kwargs)
self._retrieve_chunks(res["results"],
get_title=lambda r: r["title"],
get_url=lambda r: r["url"],
get_content=lambda r: r["raw_content"] if r["raw_content"] else r["content"],
get_score=lambda r: r["score"])
self.set_output("json", res["results"])
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"Tavily error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"Tavily error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))
class TavilyExtractParam(ToolParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "tavily_extract",
"description": "Extract web page content from one or more specified URLs using Tavily Extract.",
"parameters": {
"urls": {
"type": "array",
"description": "The URLs to extract content from.",
"default": "",
"items": {
"type": "string",
"description": "The URL to extract content from, e.g. www.yahoo.com"
},
"required": True
},
"extract_depth": {
"type": "string",
"description": "The depth of the extraction process. advanced extraction retrieves more data, including tables and embedded content, with higher success but may increase latency.basic extraction costs 1 credit per 5 successful URL extractions, while advanced extraction costs 2 credits per 5 successful URL extractions.",
"enum": ["basic", "advanced"],
"default": "basic",
"required": False,
},
"format": {
"type": "string",
"description": "The format of the extracted web page content. markdown returns content in markdown format. text returns plain text and may increase latency.",
"enum": ["markdown", "text"],
"default": "markdown",
"required": False,
}
}
}
super().__init__()
self.api_key = ""
self.extract_depth = "basic" # basic/advanced
self.urls = []
self.format = "markdown"
self.include_images = False
def check(self):
self.check_valid_value(self.extract_depth, "Tavily extract depth should be in 'basic/advanced'", ["basic", "advanced"])
self.check_valid_value(self.format, "Tavily extract format should be in 'markdown/text'", ["markdown", "text"])
def get_input_form(self) -> dict[str, dict]:
return {
"urls": {
"name": "URLs",
"type": "line"
}
}
class TavilyExtract(ToolBase, ABC):
component_name = "TavilyExtract"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
self.tavily_client = TavilyClient(api_key=self._param.api_key)
last_e = None
for fld in ["urls", "extract_depth", "format"]:
if fld not in kwargs:
kwargs[fld] = getattr(self._param, fld)
if kwargs.get("urls") and isinstance(kwargs["urls"], str):
kwargs["urls"] = kwargs["urls"].split(",")
for _ in range(self._param.max_retries+1):
try:
kwargs["include_images"] = False
res = self.tavily_client.extract(**kwargs)
self.set_output("json", res["results"])
return self.output("json")
except Exception as e:
last_e = e
logging.exception(f"Tavily error: {e}")
if last_e:
self.set_output("_ERROR", str(last_e))
return f"Tavily error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Opened {}—pulling out the main text…".format(self.get_input().get("urls", "-_-!"))

72
agent/tools/tushare.py Normal file
View File

@@ -0,0 +1,72 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)

114
agent/tools/wencai.py Normal file
View File

@@ -0,0 +1,114 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import pandas as pd
import pywencai
from agent.tools.base import ToolParamBase, ToolMeta, ToolBase
from api.utils.api_utils import timeout
class WenCaiParam(ToolParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "iwencai",
"description": """
iwencai search: search platform is committed to providing hundreds of millions of investors with the most timely, accurate and comprehensive information, covering news, announcements, research reports, blogs, forums, Weibo, characters, etc.
robo-advisor intelligent stock selection platform: through AI technology, is committed to providing investors with intelligent stock selection, quantitative investment, main force tracking, value investment, technical analysis and other types of stock selection technologies.
fund selection platform: through AI technology, is committed to providing excellent fund, value investment, quantitative analysis and other fund selection technologies for foundation citizens.
""",
"parameters": {
"query": {
"type": "string",
"description": "The question/conditions to select stocks.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class WenCai(ToolBase, ABC):
component_name = "WenCai"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("report", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
wencai_res = []
res = pywencai.get(query=kwargs["query"], query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append(res.to_markdown())
elif isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append(item[0] + "\n" + pd.DataFrame(item[1]).to_markdown())
elif isinstance(item[1], str):
wencai_res.append(item[0] + "\n" + item[1])
elif isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append(pd.DataFrame.from_dict(item[1], orient='index').to_markdown())
elif isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append(item[1].to_markdown())
else:
wencai_res.append(item[0] + "\n" + str(item[1]))
self.set_output("report", "\n\n".join(wencai_res))
return self.output("report")
except Exception as e:
last_e = e
logging.exception(f"WenCai error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"WenCai error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Pulling live financial data for `{}`.".format(self.get_input().get("query", "-_-!"))

104
agent/tools/wikipedia.py Normal file
View File

@@ -0,0 +1,104 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import wikipedia
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class WikipediaParam(ToolParamBase):
"""
Define the Wikipedia component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "wikipedia_search",
"description": """A wide range of how-to and information pages are made available in wikipedia. Since 2001, it has grown rapidly to become the world's largest reference website. From Wikipedia, the free encyclopedia.""",
"parameters": {
"query": {
"type": "string",
"description": "The search keyword to execute with wikipedia. The keyword MUST be a specific subject that can match the title.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.top_n = 10
self.language = "en"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.language, "Wikipedia languages",
['af', 'pl', 'ar', 'ast', 'az', 'bg', 'nan', 'bn', 'be', 'ca', 'cs', 'cy', 'da', 'de',
'et', 'el', 'en', 'es', 'eo', 'eu', 'fa', 'fr', 'gl', 'ko', 'hy', 'hi', 'hr', 'id',
'it', 'he', 'ka', 'lld', 'la', 'lv', 'lt', 'hu', 'mk', 'arz', 'ms', 'min', 'my', 'nl',
'ja', 'nb', 'nn', 'ce', 'uz', 'pt', 'kk', 'ro', 'ru', 'ceb', 'sk', 'sl', 'sr', 'sh',
'fi', 'sv', 'ta', 'tt', 'th', 'tg', 'azb', 'tr', 'uk', 'ur', 'vi', 'war', 'zh', 'yue'])
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
}
}
class Wikipedia(ToolBase, ABC):
component_name = "Wikipedia"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
wikipedia.set_lang(self._param.language)
wiki_engine = wikipedia
pages = []
for p in wiki_engine.search(kwargs["query"], results=self._param.top_n):
try:
pages.append(wikipedia.page(p))
except Exception:
pass
self._retrieve_chunks(pages,
get_title=lambda r: r.title,
get_url=lambda r: r.url,
get_content=lambda r: r.summary)
return self.output("formalized_content")
except Exception as e:
last_e = e
logging.exception(f"Wikipedia error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"Wikipedia error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Looking for the most relevant articles.
""".format(self.get_input().get("query", "-_-!"))

114
agent/tools/yahoofinance.py Normal file
View File

@@ -0,0 +1,114 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import pandas as pd
import yfinance as yf
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class YahooFinanceParam(ToolParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
self.meta:ToolMeta = {
"name": "yahoo_finance",
"description": "The Yahoo Finance is a service that provides access to real-time and historical stock market data. It enables users to fetch various types of stock information, such as price quotes, historical prices, company profiles, and financial news. The API offers structured data, allowing developers to integrate market data into their applications and analysis tools.",
"parameters": {
"stock_code": {
"type": "string",
"description": "The stock code or company name.",
"default": "{sys.query}",
"required": True
}
}
}
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
def get_input_form(self) -> dict[str, dict]:
return {
"stock_code": {
"name": "Stock code/Company name",
"type": "line"
}
}
class YahooFinance(ToolBase, ABC):
component_name = "YahooFinance"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("stock_code"):
self.set_output("report", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
yohoo_res = []
try:
msft = yf.Ticker(kwargs["stock_code"])
if self._param.info:
yohoo_res.append("# Information:\n" + pd.Series(msft.info).to_markdown() + "\n")
if self._param.history:
yohoo_res.append("# History:\n" + msft.history().to_markdown() + "\n")
if self._param.financials:
yohoo_res.append("# Calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n")
if self._param.balance_sheet:
yohoo_res.append("# Balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n")
yohoo_res.append("# Quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n")
if self._param.cash_flow_statement:
yohoo_res.append("# Cash flow statement:\n" + msft.cashflow.to_markdown() + "\n")
yohoo_res.append("# Quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n")
if self._param.news:
yohoo_res.append("# News:\n" + pd.DataFrame(msft.news).to_markdown() + "\n")
self.set_output("report", "\n\n".join(yohoo_res))
return self.output("report")
except Exception as e:
last_e = e
logging.exception(f"YahooFinance error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", str(last_e))
return f"YahooFinance error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return "Pulling live financial data for `{}`.".format(self.get_input().get("stock_code", "-_-!"))