改造 chunk_app.py
This commit is contained in:
@@ -16,10 +16,10 @@
|
|||||||
import datetime
|
import datetime
|
||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
|
from typing import Optional, List
|
||||||
|
|
||||||
import xxhash
|
import xxhash
|
||||||
from flask import request
|
from fastapi import APIRouter, Depends, Query, HTTPException
|
||||||
from flask_login import current_user, login_required
|
|
||||||
|
|
||||||
from api import settings
|
from api import settings
|
||||||
from api.db import LLMType, ParserType
|
from api.db import LLMType, ParserType
|
||||||
@@ -29,7 +29,17 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
|
|||||||
from api.db.services.llm_service import LLMBundle
|
from api.db.services.llm_service import LLMBundle
|
||||||
from api.db.services.search_service import SearchService
|
from api.db.services.search_service import SearchService
|
||||||
from api.db.services.user_service import UserTenantService
|
from api.db.services.user_service import UserTenantService
|
||||||
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
|
from api.models.chunk_models import (
|
||||||
|
ListChunkRequest,
|
||||||
|
GetChunkRequest,
|
||||||
|
SetChunkRequest,
|
||||||
|
SwitchChunkRequest,
|
||||||
|
RemoveChunkRequest,
|
||||||
|
CreateChunkRequest,
|
||||||
|
RetrievalTestRequest,
|
||||||
|
KnowledgeGraphRequest
|
||||||
|
)
|
||||||
|
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, get_current_user
|
||||||
from rag.app.qa import beAdoc, rmPrefix
|
from rag.app.qa import beAdoc, rmPrefix
|
||||||
from rag.app.tag import label_question
|
from rag.app.tag import label_question
|
||||||
from rag.nlp import rag_tokenizer, search
|
from rag.nlp import rag_tokenizer, search
|
||||||
@@ -37,18 +47,21 @@ from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extr
|
|||||||
from rag.settings import PAGERANK_FLD
|
from rag.settings import PAGERANK_FLD
|
||||||
from rag.utils import rmSpace
|
from rag.utils import rmSpace
|
||||||
|
|
||||||
|
# 创建 FastAPI 路由器
|
||||||
|
router = APIRouter()
|
||||||
|
|
||||||
@manager.route('/list', methods=['POST']) # noqa: F821
|
|
||||||
@login_required
|
@router.post('/list')
|
||||||
@validate_request("doc_id")
|
async def list_chunk(
|
||||||
def list_chunk():
|
request: ListChunkRequest,
|
||||||
req = request.json
|
current_user = Depends(get_current_user)
|
||||||
doc_id = req["doc_id"]
|
):
|
||||||
page = int(req.get("page", 1))
|
doc_id = request.doc_id
|
||||||
size = int(req.get("size", 30))
|
page = request.page
|
||||||
question = req.get("keywords", "")
|
size = request.size
|
||||||
|
question = request.keywords
|
||||||
try:
|
try:
|
||||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||||
if not tenant_id:
|
if not tenant_id:
|
||||||
return get_data_error_result(message="Tenant not found!")
|
return get_data_error_result(message="Tenant not found!")
|
||||||
e, doc = DocumentService.get_by_id(doc_id)
|
e, doc = DocumentService.get_by_id(doc_id)
|
||||||
@@ -58,8 +71,8 @@ def list_chunk():
|
|||||||
query = {
|
query = {
|
||||||
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
||||||
}
|
}
|
||||||
if "available_int" in req:
|
if request.available_int is not None:
|
||||||
query["available_int"] = int(req["available_int"])
|
query["available_int"] = int(request.available_int)
|
||||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||||
for id in sres.ids:
|
for id in sres.ids:
|
||||||
@@ -87,10 +100,11 @@ def list_chunk():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/get', methods=['GET']) # noqa: F821
|
@router.get('/get')
|
||||||
@login_required
|
async def get(
|
||||||
def get():
|
chunk_id: str = Query(..., description="块ID"),
|
||||||
chunk_id = request.args["chunk_id"]
|
current_user = Depends(get_current_user)
|
||||||
|
):
|
||||||
try:
|
try:
|
||||||
chunk = None
|
chunk = None
|
||||||
tenants = UserTenantService.query(user_id=current_user.id)
|
tenants = UserTenantService.query(user_id=current_user.id)
|
||||||
@@ -119,42 +133,42 @@ def get():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/set', methods=['POST']) # noqa: F821
|
@router.post('/set')
|
||||||
@login_required
|
async def set(
|
||||||
@validate_request("doc_id", "chunk_id", "content_with_weight")
|
request: SetChunkRequest,
|
||||||
def set():
|
current_user = Depends(get_current_user)
|
||||||
req = request.json
|
):
|
||||||
d = {
|
d = {
|
||||||
"id": req["chunk_id"],
|
"id": request.chunk_id,
|
||||||
"content_with_weight": req["content_with_weight"]}
|
"content_with_weight": request.content_with_weight}
|
||||||
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
|
d["content_ltks"] = rag_tokenizer.tokenize(request.content_with_weight)
|
||||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||||
if "important_kwd" in req:
|
if request.important_kwd is not None:
|
||||||
if not isinstance(req["important_kwd"], list):
|
if not isinstance(request.important_kwd, list):
|
||||||
return get_data_error_result(message="`important_kwd` should be a list")
|
return get_data_error_result(message="`important_kwd` should be a list")
|
||||||
d["important_kwd"] = req["important_kwd"]
|
d["important_kwd"] = request.important_kwd
|
||||||
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(request.important_kwd))
|
||||||
if "question_kwd" in req:
|
if request.question_kwd is not None:
|
||||||
if not isinstance(req["question_kwd"], list):
|
if not isinstance(request.question_kwd, list):
|
||||||
return get_data_error_result(message="`question_kwd` should be a list")
|
return get_data_error_result(message="`question_kwd` should be a list")
|
||||||
d["question_kwd"] = req["question_kwd"]
|
d["question_kwd"] = request.question_kwd
|
||||||
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
|
d["question_tks"] = rag_tokenizer.tokenize("\n".join(request.question_kwd))
|
||||||
if "tag_kwd" in req:
|
if request.tag_kwd is not None:
|
||||||
d["tag_kwd"] = req["tag_kwd"]
|
d["tag_kwd"] = request.tag_kwd
|
||||||
if "tag_feas" in req:
|
if request.tag_feas is not None:
|
||||||
d["tag_feas"] = req["tag_feas"]
|
d["tag_feas"] = request.tag_feas
|
||||||
if "available_int" in req:
|
if request.available_int is not None:
|
||||||
d["available_int"] = req["available_int"]
|
d["available_int"] = request.available_int
|
||||||
|
|
||||||
try:
|
try:
|
||||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
tenant_id = DocumentService.get_tenant_id(request.doc_id)
|
||||||
if not tenant_id:
|
if not tenant_id:
|
||||||
return get_data_error_result(message="Tenant not found!")
|
return get_data_error_result(message="Tenant not found!")
|
||||||
|
|
||||||
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
embd_id = DocumentService.get_embd_id(request.doc_id)
|
||||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
|
||||||
|
|
||||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
e, doc = DocumentService.get_by_id(request.doc_id)
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(message="Document not found!")
|
return get_data_error_result(message="Document not found!")
|
||||||
|
|
||||||
@@ -162,33 +176,33 @@ def set():
|
|||||||
arr = [
|
arr = [
|
||||||
t for t in re.split(
|
t for t in re.split(
|
||||||
r"[\n\t]",
|
r"[\n\t]",
|
||||||
req["content_with_weight"]) if len(t) > 1]
|
request.content_with_weight) if len(t) > 1]
|
||||||
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
|
q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
|
||||||
d = beAdoc(d, q, a, not any(
|
d = beAdoc(d, q, a, not any(
|
||||||
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
||||||
|
|
||||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
|
v, c = embd_mdl.encode([doc.name, request.content_with_weight if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
|
||||||
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
||||||
d["q_%d_vec" % len(v)] = v.tolist()
|
d["q_%d_vec" % len(v)] = v.tolist()
|
||||||
settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
|
settings.docStoreConn.update({"id": request.chunk_id}, d, search.index_name(tenant_id), doc.kb_id)
|
||||||
return get_json_result(data=True)
|
return get_json_result(data=True)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/switch', methods=['POST']) # noqa: F821
|
@router.post('/switch')
|
||||||
@login_required
|
async def switch(
|
||||||
@validate_request("chunk_ids", "available_int", "doc_id")
|
request: SwitchChunkRequest,
|
||||||
def switch():
|
current_user = Depends(get_current_user)
|
||||||
req = request.json
|
):
|
||||||
try:
|
try:
|
||||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
e, doc = DocumentService.get_by_id(request.doc_id)
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(message="Document not found!")
|
return get_data_error_result(message="Document not found!")
|
||||||
for cid in req["chunk_ids"]:
|
for cid in request.chunk_ids:
|
||||||
if not settings.docStoreConn.update({"id": cid},
|
if not settings.docStoreConn.update({"id": cid},
|
||||||
{"available_int": int(req["available_int"])},
|
{"available_int": int(request.available_int)},
|
||||||
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
|
search.index_name(DocumentService.get_tenant_id(request.doc_id)),
|
||||||
doc.kb_id):
|
doc.kb_id):
|
||||||
return get_data_error_result(message="Index updating failure")
|
return get_data_error_result(message="Index updating failure")
|
||||||
return get_json_result(data=True)
|
return get_json_result(data=True)
|
||||||
@@ -196,21 +210,21 @@ def switch():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/rm', methods=['POST']) # noqa: F821
|
@router.post('/rm')
|
||||||
@login_required
|
async def rm(
|
||||||
@validate_request("chunk_ids", "doc_id")
|
request: RemoveChunkRequest,
|
||||||
def rm():
|
current_user = Depends(get_current_user)
|
||||||
|
):
|
||||||
from rag.utils.storage_factory import STORAGE_IMPL
|
from rag.utils.storage_factory import STORAGE_IMPL
|
||||||
req = request.json
|
|
||||||
try:
|
try:
|
||||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
e, doc = DocumentService.get_by_id(request.doc_id)
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(message="Document not found!")
|
return get_data_error_result(message="Document not found!")
|
||||||
if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
|
if not settings.docStoreConn.delete({"id": request.chunk_ids},
|
||||||
search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
|
search.index_name(DocumentService.get_tenant_id(request.doc_id)),
|
||||||
doc.kb_id):
|
doc.kb_id):
|
||||||
return get_data_error_result(message="Chunk deleting failure")
|
return get_data_error_result(message="Chunk deleting failure")
|
||||||
deleted_chunk_ids = req["chunk_ids"]
|
deleted_chunk_ids = request.chunk_ids
|
||||||
chunk_number = len(deleted_chunk_ids)
|
chunk_number = len(deleted_chunk_ids)
|
||||||
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
|
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
|
||||||
for cid in deleted_chunk_ids:
|
for cid in deleted_chunk_ids:
|
||||||
@@ -221,32 +235,30 @@ def rm():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/create', methods=['POST']) # noqa: F821
|
@router.post('/create')
|
||||||
@login_required
|
async def create(
|
||||||
@validate_request("doc_id", "content_with_weight")
|
request: CreateChunkRequest,
|
||||||
def create():
|
current_user = Depends(get_current_user)
|
||||||
req = request.json
|
):
|
||||||
chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
|
chunck_id = xxhash.xxh64((request.content_with_weight + request.doc_id).encode("utf-8")).hexdigest()
|
||||||
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
|
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(request.content_with_weight),
|
||||||
"content_with_weight": req["content_with_weight"]}
|
"content_with_weight": request.content_with_weight}
|
||||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||||
d["important_kwd"] = req.get("important_kwd", [])
|
d["important_kwd"] = request.important_kwd
|
||||||
if not isinstance(d["important_kwd"], list):
|
if not isinstance(d["important_kwd"], list):
|
||||||
return get_data_error_result(message="`important_kwd` is required to be a list")
|
return get_data_error_result(message="`important_kwd` is required to be a list")
|
||||||
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
|
||||||
d["question_kwd"] = req.get("question_kwd", [])
|
d["question_kwd"] = request.question_kwd
|
||||||
if not isinstance(d["question_kwd"], list):
|
if not isinstance(d["question_kwd"], list):
|
||||||
return get_data_error_result(message="`question_kwd` is required to be a list")
|
return get_data_error_result(message="`question_kwd` is required to be a list")
|
||||||
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
|
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
|
||||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||||
if "tag_feas" in req:
|
if request.tag_feas is not None:
|
||||||
d["tag_feas"] = req["tag_feas"]
|
d["tag_feas"] = request.tag_feas
|
||||||
if "tag_feas" in req:
|
|
||||||
d["tag_feas"] = req["tag_feas"]
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
e, doc = DocumentService.get_by_id(request.doc_id)
|
||||||
if not e:
|
if not e:
|
||||||
return get_data_error_result(message="Document not found!")
|
return get_data_error_result(message="Document not found!")
|
||||||
d["kb_id"] = [doc.kb_id]
|
d["kb_id"] = [doc.kb_id]
|
||||||
@@ -254,7 +266,7 @@ def create():
|
|||||||
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
|
d["title_tks"] = rag_tokenizer.tokenize(doc.name)
|
||||||
d["doc_id"] = doc.id
|
d["doc_id"] = doc.id
|
||||||
|
|
||||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
tenant_id = DocumentService.get_tenant_id(request.doc_id)
|
||||||
if not tenant_id:
|
if not tenant_id:
|
||||||
return get_data_error_result(message="Tenant not found!")
|
return get_data_error_result(message="Tenant not found!")
|
||||||
|
|
||||||
@@ -264,10 +276,10 @@ def create():
|
|||||||
if kb.pagerank:
|
if kb.pagerank:
|
||||||
d[PAGERANK_FLD] = kb.pagerank
|
d[PAGERANK_FLD] = kb.pagerank
|
||||||
|
|
||||||
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
embd_id = DocumentService.get_embd_id(request.doc_id)
|
||||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
|
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
|
||||||
|
|
||||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
|
v, c = embd_mdl.encode([doc.name, request.content_with_weight if not d["question_kwd"] else "\n".join(d["question_kwd"])])
|
||||||
v = 0.1 * v[0] + 0.9 * v[1]
|
v = 0.1 * v[0] + 0.9 * v[1]
|
||||||
d["q_%d_vec" % len(v)] = v.tolist()
|
d["q_%d_vec" % len(v)] = v.tolist()
|
||||||
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
|
settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
|
||||||
@@ -279,29 +291,29 @@ def create():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/retrieval_test', methods=['POST']) # noqa: F821
|
@router.post('/retrieval_test')
|
||||||
@login_required
|
async def retrieval_test(
|
||||||
@validate_request("kb_id", "question")
|
request: RetrievalTestRequest,
|
||||||
def retrieval_test():
|
current_user = Depends(get_current_user)
|
||||||
req = request.json
|
):
|
||||||
page = int(req.get("page", 1))
|
page = request.page
|
||||||
size = int(req.get("size", 30))
|
size = request.size
|
||||||
question = req["question"]
|
question = request.question
|
||||||
kb_ids = req["kb_id"]
|
kb_ids = request.kb_id
|
||||||
if isinstance(kb_ids, str):
|
if isinstance(kb_ids, str):
|
||||||
kb_ids = [kb_ids]
|
kb_ids = [kb_ids]
|
||||||
if not kb_ids:
|
if not kb_ids:
|
||||||
return get_json_result(data=False, message='Please specify dataset firstly.',
|
return get_json_result(data=False, message='Please specify dataset firstly.',
|
||||||
code=settings.RetCode.DATA_ERROR)
|
code=settings.RetCode.DATA_ERROR)
|
||||||
|
|
||||||
doc_ids = req.get("doc_ids", [])
|
doc_ids = request.doc_ids
|
||||||
use_kg = req.get("use_kg", False)
|
use_kg = request.use_kg
|
||||||
top = int(req.get("top_k", 1024))
|
top = request.top_k
|
||||||
langs = req.get("cross_languages", [])
|
langs = request.cross_languages
|
||||||
tenant_ids = []
|
tenant_ids = []
|
||||||
|
|
||||||
if req.get("search_id", ""):
|
if request.search_id:
|
||||||
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
|
search_config = SearchService.get_detail(request.search_id).get("search_config", {})
|
||||||
meta_data_filter = search_config.get("meta_data_filter", {})
|
meta_data_filter = search_config.get("meta_data_filter", {})
|
||||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||||
if meta_data_filter.get("method") == "auto":
|
if meta_data_filter.get("method") == "auto":
|
||||||
@@ -338,19 +350,19 @@ def retrieval_test():
|
|||||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||||
|
|
||||||
rerank_mdl = None
|
rerank_mdl = None
|
||||||
if req.get("rerank_id"):
|
if request.rerank_id:
|
||||||
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
|
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=request.rerank_id)
|
||||||
|
|
||||||
if req.get("keyword", False):
|
if request.keyword:
|
||||||
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
||||||
question += keyword_extraction(chat_mdl, question)
|
question += keyword_extraction(chat_mdl, question)
|
||||||
|
|
||||||
labels = label_question(question, [kb])
|
labels = label_question(question, [kb])
|
||||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||||
float(req.get("similarity_threshold", 0.0)),
|
float(request.similarity_threshold),
|
||||||
float(req.get("vector_similarity_weight", 0.3)),
|
float(request.vector_similarity_weight),
|
||||||
top,
|
top,
|
||||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
|
doc_ids, rerank_mdl=rerank_mdl, highlight=request.highlight,
|
||||||
rank_feature=labels
|
rank_feature=labels
|
||||||
)
|
)
|
||||||
if use_kg:
|
if use_kg:
|
||||||
@@ -374,10 +386,11 @@ def retrieval_test():
|
|||||||
return server_error_response(e)
|
return server_error_response(e)
|
||||||
|
|
||||||
|
|
||||||
@manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
|
@router.get('/knowledge_graph')
|
||||||
@login_required
|
async def knowledge_graph(
|
||||||
def knowledge_graph():
|
doc_id: str = Query(..., description="文档ID"),
|
||||||
doc_id = request.args["doc_id"]
|
current_user = Depends(get_current_user)
|
||||||
|
):
|
||||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||||
req = {
|
req = {
|
||||||
|
|||||||
88
api/models/chunk_models.py
Normal file
88
api/models/chunk_models.py
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
#
|
||||||
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
from typing import Optional, List, Dict, Any
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
class ListChunkRequest(BaseModel):
|
||||||
|
"""列出块请求模型"""
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
|
page: Optional[int] = Field(1, description="页码")
|
||||||
|
size: Optional[int] = Field(30, description="每页大小")
|
||||||
|
keywords: Optional[str] = Field("", description="关键词")
|
||||||
|
available_int: Optional[int] = Field(None, description="可用性状态")
|
||||||
|
|
||||||
|
|
||||||
|
class GetChunkRequest(BaseModel):
|
||||||
|
"""获取块请求模型"""
|
||||||
|
chunk_id: str = Field(..., description="块ID")
|
||||||
|
|
||||||
|
|
||||||
|
class SetChunkRequest(BaseModel):
|
||||||
|
"""设置块请求模型"""
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
|
chunk_id: str = Field(..., description="块ID")
|
||||||
|
content_with_weight: str = Field(..., description="带权重的内容")
|
||||||
|
important_kwd: Optional[List[str]] = Field(None, description="重要关键词")
|
||||||
|
question_kwd: Optional[List[str]] = Field(None, description="问题关键词")
|
||||||
|
tag_kwd: Optional[str] = Field(None, description="标签关键词")
|
||||||
|
tag_feas: Optional[Any] = Field(None, description="标签特征")
|
||||||
|
available_int: Optional[int] = Field(None, description="可用性状态")
|
||||||
|
|
||||||
|
|
||||||
|
class SwitchChunkRequest(BaseModel):
|
||||||
|
"""切换块状态请求模型"""
|
||||||
|
chunk_ids: List[str] = Field(..., description="块ID列表")
|
||||||
|
available_int: int = Field(..., description="可用性状态")
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
|
|
||||||
|
|
||||||
|
class RemoveChunkRequest(BaseModel):
|
||||||
|
"""删除块请求模型"""
|
||||||
|
chunk_ids: List[str] = Field(..., description="块ID列表")
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
|
|
||||||
|
|
||||||
|
class CreateChunkRequest(BaseModel):
|
||||||
|
"""创建块请求模型"""
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
|
content_with_weight: str = Field(..., description="带权重的内容")
|
||||||
|
important_kwd: Optional[List[str]] = Field([], description="重要关键词")
|
||||||
|
question_kwd: Optional[List[str]] = Field([], description="问题关键词")
|
||||||
|
tag_feas: Optional[Any] = Field(None, description="标签特征")
|
||||||
|
|
||||||
|
|
||||||
|
class RetrievalTestRequest(BaseModel):
|
||||||
|
"""检索测试请求模型"""
|
||||||
|
kb_id: List[str] = Field(..., description="知识库ID列表")
|
||||||
|
question: str = Field(..., description="问题")
|
||||||
|
page: Optional[int] = Field(1, description="页码")
|
||||||
|
size: Optional[int] = Field(30, description="每页大小")
|
||||||
|
doc_ids: Optional[List[str]] = Field([], description="文档ID列表")
|
||||||
|
use_kg: Optional[bool] = Field(False, description="是否使用知识图谱")
|
||||||
|
top_k: Optional[int] = Field(1024, description="返回数量")
|
||||||
|
cross_languages: Optional[List[str]] = Field([], description="跨语言列表")
|
||||||
|
search_id: Optional[str] = Field("", description="搜索ID")
|
||||||
|
rerank_id: Optional[str] = Field(None, description="重排序ID")
|
||||||
|
keyword: Optional[bool] = Field(False, description="是否使用关键词")
|
||||||
|
similarity_threshold: Optional[float] = Field(0.0, description="相似度阈值")
|
||||||
|
vector_similarity_weight: Optional[float] = Field(0.3, description="向量相似度权重")
|
||||||
|
highlight: Optional[bool] = Field(None, description="是否高亮")
|
||||||
|
|
||||||
|
|
||||||
|
class KnowledgeGraphRequest(BaseModel):
|
||||||
|
"""知识图谱请求模型"""
|
||||||
|
doc_id: str = Field(..., description="文档ID")
|
||||||
Reference in New Issue
Block a user