Files
TERES_fastapi_backend/api/apps/llm_app.py

442 lines
16 KiB
Python
Raw Normal View History

2025-10-13 13:18:03 +08:00
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
2025-10-28 11:49:07 +08:00
from fastapi import APIRouter, Depends, Query
2025-11-04 16:06:36 +08:00
from api.apps.models.auth_dependencies import get_current_user
from api.apps.models.llm_models import (
SetApiKeyRequest,
AddLLMRequest,
DeleteLLMRequest,
DeleteFactoryRequest,
MyLLMsQuery,
ListLLMsQuery,
)
2025-10-13 13:18:03 +08:00
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
from api.db.services.llm_service import LLMService
from api import settings
2025-11-04 16:06:36 +08:00
from api.utils.api_utils import server_error_response, get_data_error_result
2025-10-13 13:18:03 +08:00
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
2025-11-04 16:06:36 +08:00
from api.utils.api_utils import get_json_result
2025-10-13 13:18:03 +08:00
from api.utils.base64_image import test_image
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
2025-11-04 16:06:36 +08:00
# 创建路由器
2025-10-28 11:49:07 +08:00
router = APIRouter()
2025-10-13 13:18:03 +08:00
2025-10-28 11:49:07 +08:00
@router.get('/factories')
2025-11-04 16:06:36 +08:00
async def factories(
current_user = Depends(get_current_user)
):
"""获取 LLM 工厂列表"""
2025-10-13 13:18:03 +08:00
try:
fac = LLMFactoriesService.get_all()
fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
llms = LLMService.get_all()
mdl_types = {}
for m in llms:
if m.status != StatusEnum.VALID.value:
continue
if m.fid not in mdl_types:
mdl_types[m.fid] = set([])
mdl_types[m.fid].add(m.model_type)
for f in fac:
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
return get_json_result(data=fac)
except Exception as e:
return server_error_response(e)
2025-10-28 11:49:07 +08:00
@router.post('/set_api_key')
2025-11-04 16:06:36 +08:00
async def set_api_key(
request: SetApiKeyRequest,
current_user = Depends(get_current_user)
):
"""设置 API Key"""
req = request.model_dump(exclude_unset=True)
2025-10-13 13:18:03 +08:00
# test if api key works
chat_passed, embd_passed, rerank_passed = False, False, False
2025-11-04 16:06:36 +08:00
factory = req["llm_factory"]
2025-10-13 13:18:03 +08:00
extra = {"provider": factory}
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
2025-11-04 16:06:36 +08:00
req["api_key"], llm.llm_name, base_url=req.get("base_url", ""))
2025-10-13 13:18:03 +08:00
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
embd_passed = True
except Exception as e:
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
2025-11-04 16:06:36 +08:00
req["api_key"], llm.llm_name, base_url=req.get("base_url", ""), **extra)
2025-10-13 13:18:03 +08:00
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
{"temperature": 0.9, 'max_tokens': 50})
if m.find("**ERROR**") >= 0:
raise Exception(m)
chat_passed = True
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
elif not rerank_passed and llm.model_type == LLMType.RERANK:
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
mdl = RerankModel[factory](
2025-11-04 16:06:36 +08:00
req["api_key"], llm.llm_name, base_url=req.get("base_url", ""))
2025-10-13 13:18:03 +08:00
try:
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
if len(arr) == 0 or tc == 0:
raise Exception("Fail")
rerank_passed = True
logging.debug(f'passed model rerank {llm.llm_name}')
except Exception as e:
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(
e)
if any([embd_passed, chat_passed, rerank_passed]):
msg = ''
break
if msg:
return get_data_error_result(message=msg)
llm_config = {
2025-11-04 16:06:36 +08:00
"api_key": req["api_key"],
"api_base": req.get("base_url", "")
2025-10-13 13:18:03 +08:00
}
2025-11-04 16:06:36 +08:00
for n in ["model_type", "llm_name"]:
if n in req:
llm_config[n] = req[n]
2025-10-13 13:18:03 +08:00
for llm in LLMService.query(fid=factory):
llm_config["max_tokens"]=llm.max_tokens
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id,
TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm.llm_name],
llm_config):
TenantLLMService.save(
tenant_id=current_user.id,
llm_factory=factory,
llm_name=llm.llm_name,
model_type=llm.model_type,
api_key=llm_config["api_key"],
api_base=llm_config["api_base"],
max_tokens=llm_config["max_tokens"]
)
return get_json_result(data=True)
2025-10-28 11:49:07 +08:00
@router.post('/add_llm')
2025-11-04 16:06:36 +08:00
async def add_llm(
request: AddLLMRequest,
current_user = Depends(get_current_user)
):
"""添加 LLM"""
req = request.model_dump(exclude_unset=True)
factory = req["llm_factory"]
api_key = req.get("api_key", "x")
llm_name = req.get("llm_name")
2025-10-13 13:18:03 +08:00
def apikey_json(keys):
2025-11-04 16:06:36 +08:00
nonlocal req
return json.dumps({k: req.get(k, "") for k in keys})
2025-10-13 13:18:03 +08:00
if factory == "VolcEngine":
# For VolcEngine, due to its special authentication method
# Assemble ark_api_key endpoint_id into api_key
api_key = apikey_json(["ark_api_key", "endpoint_id"])
elif factory == "Tencent Hunyuan":
2025-11-04 16:06:36 +08:00
req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
# 创建 SetApiKeyRequest 并调用 set_api_key 逻辑
set_api_key_req = SetApiKeyRequest(
llm_factory=req["llm_factory"],
api_key=req["api_key"],
base_url=req.get("api_base", req.get("base_url", "")),
model_type=req.get("model_type"),
llm_name=req.get("llm_name")
2025-10-28 11:49:07 +08:00
)
2025-11-04 16:06:36 +08:00
return await set_api_key(set_api_key_req, current_user)
2025-10-13 13:18:03 +08:00
elif factory == "Tencent Cloud":
2025-11-04 16:06:36 +08:00
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
# 创建 SetApiKeyRequest 并调用 set_api_key 逻辑
set_api_key_req = SetApiKeyRequest(
llm_factory=req["llm_factory"],
api_key=req["api_key"],
base_url=req.get("api_base", req.get("base_url", "")),
model_type=req.get("model_type"),
llm_name=req.get("llm_name")
2025-10-28 11:49:07 +08:00
)
2025-11-04 16:06:36 +08:00
return await set_api_key(set_api_key_req, current_user)
2025-10-13 13:18:03 +08:00
elif factory == "Bedrock":
# For Bedrock, due to its special authentication method
# Assemble bedrock_ak, bedrock_sk, bedrock_region
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
elif factory == "LocalAI":
llm_name += "___LocalAI"
elif factory == "HuggingFace":
llm_name += "___HuggingFace"
elif factory == "OpenAI-API-Compatible":
llm_name += "___OpenAI-API"
elif factory == "VLLM":
llm_name += "___VLLM"
elif factory == "XunFei Spark":
2025-11-04 16:06:36 +08:00
if req["model_type"] == "chat":
api_key = req.get("spark_api_password", "")
elif req["model_type"] == "tts":
2025-10-13 13:18:03 +08:00
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
elif factory == "BaiduYiyan":
api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
elif factory == "Fish Audio":
api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
elif factory == "Google Cloud":
api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
elif factory == "Azure-OpenAI":
api_key = apikey_json(["api_key", "api_version"])
2025-11-04 16:06:36 +08:00
elif factory == "OpenRouter":
api_key = apikey_json(["api_key", "provider_order"])
2025-10-13 13:18:03 +08:00
llm = {
"tenant_id": current_user.id,
"llm_factory": factory,
2025-11-04 16:06:36 +08:00
"model_type": req["model_type"],
2025-10-13 13:18:03 +08:00
"llm_name": llm_name,
2025-11-04 16:06:36 +08:00
"api_base": req.get("api_base", ""),
2025-10-13 13:18:03 +08:00
"api_key": api_key,
2025-11-04 16:06:36 +08:00
"max_tokens": req.get("max_tokens")
2025-10-13 13:18:03 +08:00
}
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
extra = {"provider": factory}
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"])
try:
arr, tc = mdl.encode(["Test if the api key is available"])
if len(arr[0]) == 0:
raise Exception("Fail")
except Exception as e:
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
base_url=llm["api_base"],
**extra,
)
try:
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
"temperature": 0.9})
if not tc and m.find("**ERROR**:") >= 0:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
try:
mdl = RerankModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
mdl = CvModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
base_url=llm["api_base"]
)
try:
image_data = test_image
m, tc = mdl.describe(image_data)
if not m and not tc:
raise Exception(m)
except Exception as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
mdl = TTSModel[factory](
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ RAGFlower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
else:
# TODO: check other type of models
pass
if msg:
return get_data_error_result(message=msg)
if not TenantLLMService.filter_update(
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
TenantLLM.llm_name == llm["llm_name"]], llm):
TenantLLMService.save(**llm)
return get_json_result(data=True)
2025-10-28 11:49:07 +08:00
@router.post('/delete_llm')
2025-11-04 16:06:36 +08:00
async def delete_llm(
request: DeleteLLMRequest,
current_user = Depends(get_current_user)
):
"""删除 LLM"""
2025-10-13 13:18:03 +08:00
TenantLLMService.filter_delete(
2025-10-28 11:49:07 +08:00
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == request.llm_factory,
TenantLLM.llm_name == request.llm_name])
2025-10-13 13:18:03 +08:00
return get_json_result(data=True)
2025-10-28 11:49:07 +08:00
@router.post('/delete_factory')
2025-11-04 16:06:36 +08:00
async def delete_factory(
request: DeleteFactoryRequest,
current_user = Depends(get_current_user)
):
"""删除工厂"""
2025-10-13 13:18:03 +08:00
TenantLLMService.filter_delete(
2025-10-28 11:49:07 +08:00
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == request.llm_factory])
2025-10-13 13:18:03 +08:00
return get_json_result(data=True)
2025-10-28 11:49:07 +08:00
@router.get('/my_llms')
async def my_llms(
2025-11-04 16:06:36 +08:00
query: MyLLMsQuery = Depends(),
2025-10-28 11:49:07 +08:00
current_user = Depends(get_current_user)
):
2025-11-04 16:06:36 +08:00
"""获取我的 LLMs"""
2025-10-13 13:18:03 +08:00
try:
2025-11-04 16:06:36 +08:00
include_details = query.include_details.lower() == 'true'
2025-10-13 13:18:03 +08:00
if include_details:
res = {}
objs = TenantLLMService.query(tenant_id=current_user.id)
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
for o in objs:
o_dict = o.to_dict()
factory_tags = None
for f in factories:
if f.name == o_dict["llm_factory"]:
factory_tags = f.tags
break
if o_dict["llm_factory"] not in res:
res[o_dict["llm_factory"]] = {
"tags": factory_tags,
"llm": []
}
res[o_dict["llm_factory"]]["llm"].append({
"type": o_dict["model_type"],
"name": o_dict["llm_name"],
"used_token": o_dict["used_tokens"],
"api_base": o_dict["api_base"] or "",
"max_tokens": o_dict["max_tokens"] or 8192
})
else:
res = {}
for o in TenantLLMService.get_my_llms(current_user.id):
if o["llm_factory"] not in res:
res[o["llm_factory"]] = {
"tags": o["tags"],
"llm": []
}
res[o["llm_factory"]]["llm"].append({
"type": o["model_type"],
"name": o["llm_name"],
"used_token": o["used_tokens"]
})
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
2025-10-28 11:49:07 +08:00
@router.get('/list')
async def list_app(
2025-11-04 16:06:36 +08:00
query: ListLLMsQuery = Depends(),
2025-10-28 11:49:07 +08:00
current_user = Depends(get_current_user)
):
2025-11-04 16:06:36 +08:00
"""列出 LLMs"""
2025-10-13 13:18:03 +08:00
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
2025-11-04 16:06:36 +08:00
model_type = query.model_type
2025-10-13 13:18:03 +08:00
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
llms = LLMService.get_all()
llms = [m.to_dict()
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:
if o.llm_name + "@" + o.llm_factory in llm_set:
continue
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
res = {}
for m in llms:
if model_type and m["model_type"].find(model_type) < 0:
continue
if m["fid"] not in res:
res[m["fid"]] = []
res[m["fid"]].append(m)
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)