Files
TERES_fastapi_backend/rag/llm/cv_model.py

979 lines
36 KiB
Python
Raw Permalink Normal View History

2025-10-13 13:18:03 +08:00
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
2025-11-04 16:06:36 +08:00
2025-10-13 13:18:03 +08:00
import base64
import json
import os
2025-11-04 16:06:36 +08:00
import tempfile
import logging
2025-10-13 13:18:03 +08:00
from abc import ABC
from copy import deepcopy
from io import BytesIO
2025-11-04 16:06:36 +08:00
from pathlib import Path
2025-10-13 13:18:03 +08:00
from urllib.parse import urljoin
import requests
from openai import OpenAI
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from rag.nlp import is_english
from rag.prompts.generator import vision_llm_describe_prompt
from rag.utils import num_tokens_from_string, total_token_count_from_response
class Base(ABC):
def __init__(self, **kwargs):
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
self.max_rounds = kwargs.get("max_rounds", 5)
self.is_tools = False
self.tools = []
self.toolcall_sessions = {}
2025-11-04 16:06:36 +08:00
self.extra_body = None
2025-10-13 13:18:03 +08:00
def describe(self, image):
raise NotImplementedError("Please implement encode method!")
def describe_with_prompt(self, image, prompt=None):
raise NotImplementedError("Please implement encode method!")
2025-11-04 16:06:36 +08:00
def _form_history(self, system, history, images=None):
2025-10-13 13:18:03 +08:00
hist = []
if system:
hist.append({"role": "system", "content": system})
for h in history:
if images and h["role"] == "user":
h["content"] = self._image_prompt(h["content"], images)
images = []
hist.append(h)
return hist
def _image_prompt(self, text, images):
if not images:
return text
if isinstance(images, str) or "bytes" in type(images).__name__:
images = [images]
pmpt = [{"type": "text", "text": text}]
for img in images:
pmpt.append({
"type": "image_url",
"image_url": {
"url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}"
}
})
return pmpt
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None, **kwargs):
2025-10-13 13:18:03 +08:00
try:
response = self.client.chat.completions.create(
model=self.model_name,
2025-11-04 16:06:36 +08:00
messages=self._form_history(system, history, images),
extra_body=self.extra_body,
2025-10-13 13:18:03 +08:00
)
return response.choices[0].message.content.strip(), response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
2025-10-13 13:18:03 +08:00
ans = ""
tk_count = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=self._form_history(system, history, images),
2025-11-04 16:06:36 +08:00
stream=True,
extra_body=self.extra_body,
2025-10-13 13:18:03 +08:00
)
for resp in response:
if not resp.choices[0].delta.content:
continue
delta = resp.choices[0].delta.content
ans = delta
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
if resp.choices[0].finish_reason == "stop":
tk_count += resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
@staticmethod
def image2base64(image):
# Return a data URL with the correct MIME to avoid provider mismatches
if isinstance(image, bytes):
# Best-effort magic number sniffing
mime = "image/png"
if len(image) >= 2 and image[0] == 0xFF and image[1] == 0xD8:
mime = "image/jpeg"
b64 = base64.b64encode(image).decode("utf-8")
return f"data:{mime};base64,{b64}"
if isinstance(image, BytesIO):
data = image.getvalue()
mime = "image/png"
if len(data) >= 2 and data[0] == 0xFF and data[1] == 0xD8:
mime = "image/jpeg"
b64 = base64.b64encode(data).decode("utf-8")
return f"data:{mime};base64,{b64}"
with BytesIO() as buffered:
fmt = "jpeg"
try:
image.save(buffered, format="JPEG")
except Exception:
# reset buffer before saving PNG
buffered.seek(0)
buffered.truncate()
image.save(buffered, format="PNG")
fmt = "png"
data = buffered.getvalue()
b64 = base64.b64encode(data).decode("utf-8")
mime = f"image/{fmt}"
return f"data:{mime};base64,{b64}"
def prompt(self, b64):
return [
{
"role": "user",
"content": self._image_prompt(
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
b64
)
}
]
def vision_llm_prompt(self, b64, prompt=None):
return [
{
"role": "user",
"content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)
}
]
class GptV4(Base):
_FACTORY_NAME = "OpenAI"
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
if not base_url:
base_url = "https://api.openai.com/v1"
2025-11-04 16:06:36 +08:00
self.api_key = key
2025-10-13 13:18:03 +08:00
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
super().__init__(**kwargs)
def describe(self, image):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model=self.model_name,
messages=self.prompt(b64),
2025-11-04 16:06:36 +08:00
extra_body=self.extra_body,
2025-10-13 13:18:03 +08:00
)
return res.choices[0].message.content.strip(), total_token_count_from_response(res)
def describe_with_prompt(self, image, prompt=None):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model=self.model_name,
messages=self.vision_llm_prompt(b64, prompt),
2025-11-04 16:06:36 +08:00
extra_body=self.extra_body,
2025-10-13 13:18:03 +08:00
)
return res.choices[0].message.content.strip(),total_token_count_from_response(res)
class AzureGptV4(GptV4):
_FACTORY_NAME = "Azure-OpenAI"
def __init__(self, key, model_name, lang="Chinese", **kwargs):
api_key = json.loads(key).get("api_key", "")
api_version = json.loads(key).get("api_version", "2024-02-01")
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
class xAICV(GptV4):
_FACTORY_NAME = "xAI"
def __init__(self, key, model_name="grok-3", lang="Chinese", base_url=None, **kwargs):
if not base_url:
base_url = "https://api.x.ai/v1"
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
class QWenCV(GptV4):
_FACTORY_NAME = "Tongyi-Qianwen"
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", base_url=None, **kwargs):
if not base_url:
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
if video_bytes:
try:
summary, summary_num_tokens = self._process_video(video_bytes, filename)
return summary, summary_num_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
return "**ERROR**: Method chat not supported yet.", 0
def _process_video(self, video_bytes, filename):
from dashscope import MultiModalConversation
video_suffix = Path(filename).suffix or ".mp4"
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
tmp.write(video_bytes)
tmp_path = tmp.name
video_path = f"file://{tmp_path}"
messages = [
{
"role": "user",
"content": [
{
"video": video_path,
"fps": 2,
},
{
"text": "Please summarize this video in proper sentences.",
},
],
}
]
def call_api():
response = MultiModalConversation.call(
api_key=self.api_key,
model=self.model_name,
messages=messages,
)
summary = response["output"]["choices"][0]["message"].content[0]["text"]
return summary, num_tokens_from_string(summary)
try:
return call_api()
except Exception as e1:
import dashscope
dashscope.base_http_api_url = "https://dashscope-intl.aliyuncs.com/api/v1"
try:
return call_api()
except Exception as e2:
raise RuntimeError(f"Both default and intl endpoint failed.\nFirst error: {e1}\nSecond error: {e2}")
2025-10-13 13:18:03 +08:00
class HunyuanCV(GptV4):
_FACTORY_NAME = "Tencent Hunyuan"
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
if not base_url:
base_url = "https://api.hunyuan.cloud.tencent.com/v1"
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
class Zhipu4V(GptV4):
_FACTORY_NAME = "ZHIPU-AI"
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
class StepFunCV(GptV4):
_FACTORY_NAME = "StepFun"
def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1", **kwargs):
if not base_url:
base_url = "https://api.stepfun.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
2025-11-04 16:06:36 +08:00
class VolcEngineCV(GptV4):
_FACTORY_NAME = "VolcEngine"
def __init__(self, key, model_name, lang="Chinese", base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
if not base_url:
base_url = "https://ark.cn-beijing.volces.com/api/v3"
ark_api_key = json.loads(key).get("ark_api_key", "")
self.client = OpenAI(api_key=ark_api_key, base_url=base_url)
self.model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
self.lang = lang
Base.__init__(self, **kwargs)
2025-10-13 13:18:03 +08:00
class LmStudioCV(GptV4):
_FACTORY_NAME = "LM-Studio"
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
class OpenAI_APICV(GptV4):
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
if not base_url:
raise ValueError("url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
Base.__init__(self, **kwargs)
class TogetherAICV(GptV4):
_FACTORY_NAME = "TogetherAI"
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1", **kwargs):
if not base_url:
base_url = "https://api.together.xyz/v1"
super().__init__(key, model_name, lang, base_url, **kwargs)
class YiCV(GptV4):
_FACTORY_NAME = "01.AI"
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://api.lingyiwanwu.com/v1", **kwargs
):
if not base_url:
base_url = "https://api.lingyiwanwu.com/v1"
super().__init__(key, model_name, lang, base_url, **kwargs)
class SILICONFLOWCV(GptV4):
_FACTORY_NAME = "SILICONFLOW"
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://api.siliconflow.cn/v1", **kwargs
):
if not base_url:
base_url = "https://api.siliconflow.cn/v1"
super().__init__(key, model_name, lang, base_url, **kwargs)
class OpenRouterCV(GptV4):
_FACTORY_NAME = "OpenRouter"
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://openrouter.ai/api/v1", **kwargs
):
if not base_url:
base_url = "https://openrouter.ai/api/v1"
2025-11-04 16:06:36 +08:00
api_key = json.loads(key).get("api_key", "")
self.client = OpenAI(api_key=api_key, base_url=base_url)
2025-10-13 13:18:03 +08:00
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
2025-11-04 16:06:36 +08:00
provider_order = json.loads(key).get("provider_order", "")
self.extra_body = {}
if provider_order:
def _to_order_list(x):
if x is None:
return []
if isinstance(x, str):
return [s.strip() for s in x.split(",") if s.strip()]
if isinstance(x, (list, tuple)):
return [str(s).strip() for s in x if str(s).strip()]
return []
provider_cfg = {}
provider_order = _to_order_list(provider_order)
provider_cfg["order"] = provider_order
provider_cfg["allow_fallbacks"] = False
self.extra_body["provider"] = provider_cfg
2025-10-13 13:18:03 +08:00
class LocalAICV(GptV4):
_FACTORY_NAME = "LocalAI"
def __init__(self, key, model_name, base_url, lang="Chinese", **kwargs):
if not base_url:
raise ValueError("Local cv model url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
Base.__init__(self, **kwargs)
class XinferenceCV(GptV4):
_FACTORY_NAME = "Xinference"
def __init__(self, key, model_name="", lang="Chinese", base_url="", **kwargs):
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
class GPUStackCV(GptV4):
_FACTORY_NAME = "GPUStack"
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
self.lang = lang
Base.__init__(self, **kwargs)
class LocalCV(Base):
_FACTORY_NAME = "Moonshot"
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
pass
def describe(self, image):
return "", 0
class OllamaCV(Base):
_FACTORY_NAME = "Ollama"
def __init__(self, key, model_name, lang="Chinese", **kwargs):
from ollama import Client
self.client = Client(host=kwargs["base_url"])
self.model_name = model_name
self.lang = lang
self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
Base.__init__(self, **kwargs)
def _clean_img(self, img):
if not isinstance(img, str):
return img
#remove the header like "data/*;base64,"
if img.startswith("data:") and ";base64," in img:
img = img.split(";base64,")[1]
return img
def _clean_conf(self, gen_conf):
options = {}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
return options
2025-11-04 16:06:36 +08:00
def _form_history(self, system, history, images=None):
2025-10-13 13:18:03 +08:00
hist = deepcopy(history)
if system and hist[0]["role"] == "user":
hist.insert(0, {"role": "system", "content": system})
if not images:
return hist
temp_images = []
for img in images:
temp_images.append(self._clean_img(img))
for his in hist:
if his["role"] == "user":
his["images"] = temp_images
break
return hist
def describe(self, image):
prompt = self.prompt("")
try:
response = self.client.generate(
model=self.model_name,
prompt=prompt[0]["content"][0]["text"],
images=[image],
)
ans = response["response"].strip()
return ans, 128
except Exception as e:
return "**ERROR**: " + str(e), 0
def describe_with_prompt(self, image, prompt=None):
vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
try:
response = self.client.generate(
model=self.model_name,
prompt=vision_prompt[0]["content"][0]["text"],
images=[image],
)
ans = response["response"].strip()
return ans, 128
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
try:
response = self.client.chat(
model=self.model_name,
messages=self._form_history(system, history, images),
options=self._clean_conf(gen_conf),
keep_alive=self.keep_alive
)
ans = response["message"]["content"].strip()
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
ans = ""
try:
response = self.client.chat(
model=self.model_name,
messages=self._form_history(system, history, images),
stream=True,
options=self._clean_conf(gen_conf),
keep_alive=self.keep_alive
)
for resp in response:
if resp["done"]:
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
ans = resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class GeminiCV(Base):
_FACTORY_NAME = "Gemini"
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
from google.generativeai import GenerativeModel, client
client.configure(api_key=key)
_client = client.get_default_generative_client()
2025-11-04 16:06:36 +08:00
self.api_key=key
2025-10-13 13:18:03 +08:00
self.model_name = model_name
self.model = GenerativeModel(model_name=self.model_name)
self.model._client = _client
self.lang = lang
Base.__init__(self, **kwargs)
2025-11-04 16:06:36 +08:00
def _form_history(self, system, history, images=None):
2025-10-13 13:18:03 +08:00
hist = []
if system:
hist.append({"role": "user", "parts": [system, history[0]["content"]]})
for img in images:
hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img)
for h in history[1:]:
hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]})
return hist
def describe(self, image):
from PIL.Image import open
prompt = (
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
if self.lang.lower() == "chinese"
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
)
b64 = self.image2base64(image)
with BytesIO(base64.b64decode(b64)) as bio:
with open(bio) as img:
input = [prompt, img]
res = self.model.generate_content(input)
return res.text, total_token_count_from_response(res)
def describe_with_prompt(self, image, prompt=None):
from PIL.Image import open
b64 = self.image2base64(image)
vision_prompt = prompt if prompt else vision_llm_describe_prompt()
with BytesIO(base64.b64decode(b64)) as bio:
with open(bio) as img:
input = [vision_prompt, img]
res = self.model.generate_content(input)
return res.text, total_token_count_from_response(res)
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None, video_bytes=None, filename=""):
if video_bytes:
try:
summary, summary_num_tokens = self._process_video(video_bytes, filename)
return summary, summary_num_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-10-13 13:18:03 +08:00
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
try:
response = self.model.generate_content(
self._form_history(system, history, images),
generation_config=generation_config)
ans = response.text
return ans, total_token_count_from_response(ans)
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
ans = ""
response = None
try:
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
response = self.model.generate_content(
self._form_history(system, history, images),
generation_config=generation_config,
stream=True,
)
for resp in response:
if not resp.text:
continue
ans = resp.text
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_token_count_from_response(response)
2025-11-04 16:06:36 +08:00
def _process_video(self, video_bytes, filename):
from google import genai
from google.genai import types
video_size_mb = len(video_bytes) / (1024 * 1024)
client = genai.Client(api_key=self.api_key)
tmp_path = None
try:
if video_size_mb <= 20:
response = client.models.generate_content(
model="models/gemini-2.5-flash",
contents=types.Content(parts=[
types.Part(inline_data=types.Blob(data=video_bytes, mime_type="video/mp4")),
types.Part(text="Please summarize the video in proper sentences.")
])
)
else:
logging.info(f"Video size {video_size_mb:.2f}MB exceeds 20MB. Using Files API...")
video_suffix = Path(filename).suffix or ".mp4"
with tempfile.NamedTemporaryFile(delete=False, suffix=video_suffix) as tmp:
tmp.write(video_bytes)
tmp_path = Path(tmp.name)
uploaded_file = client.files.upload(file=tmp_path)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[uploaded_file, "Please summarize this video in proper sentences."]
)
summary = response.text or ""
logging.info(f"Video summarized: {summary[:32]}...")
return summary, num_tokens_from_string(summary)
except Exception as e:
logging.error(f"Video processing failed: {e}")
raise
finally:
if tmp_path and tmp_path.exists():
tmp_path.unlink()
2025-10-13 13:18:03 +08:00
class NvidiaCV(Base):
_FACTORY_NAME = "NVIDIA"
def __init__(
self,
key,
model_name,
lang="Chinese",
base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs
):
if not base_url:
base_url = ("https://ai.api.nvidia.com/v1/vlm",)
self.lang = lang
factory, llm_name = model_name.split("/")
if factory != "liuhaotian":
self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
else:
self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
self.key = key
Base.__init__(self, **kwargs)
def _image_prompt(self, text, images):
if not images:
return text
htmls = ""
for img in images:
htmls += ' <img src="{}"/>'.format(f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img)
return text + htmls
def describe(self, image):
b64 = self.image2base64(image)
response = requests.post(
url=self.base_url,
headers={
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {self.key}",
},
json={"messages": self.prompt(b64)},
)
response = response.json()
return (
response["choices"][0]["message"]["content"].strip(),
2025-11-04 16:06:36 +08:00
total_token_count_from_response(response),
2025-10-13 13:18:03 +08:00
)
def _request(self, msg, gen_conf={}):
response = requests.post(
url=self.base_url,
headers={
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {self.key}",
},
json={
"messages": msg, **gen_conf
},
)
return response.json()
def describe_with_prompt(self, image, prompt=None):
b64 = self.image2base64(image)
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
response = self._request(vision_prompt)
return (
response["choices"][0]["message"]["content"].strip(),
2025-11-04 16:06:36 +08:00
total_token_count_from_response(response)
2025-10-13 13:18:03 +08:00
)
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None, **kwargs):
2025-10-13 13:18:03 +08:00
try:
response = self._request(self._form_history(system, history, images), gen_conf)
return (
response["choices"][0]["message"]["content"].strip(),
2025-11-04 16:06:36 +08:00
total_token_count_from_response(response)
2025-10-13 13:18:03 +08:00
)
except Exception as e:
return "**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None, **kwargs):
2025-10-13 13:18:03 +08:00
total_tokens = 0
try:
response = self._request(self._form_history(system, history, images), gen_conf)
cnt = response["choices"][0]["message"]["content"]
if "usage" in response and "total_tokens" in response["usage"]:
2025-11-04 16:06:36 +08:00
total_tokens += total_token_count_from_response(response)
2025-10-13 13:18:03 +08:00
for resp in cnt:
yield resp
except Exception as e:
yield "\n**ERROR**: " + str(e)
yield total_tokens
class AnthropicCV(Base):
_FACTORY_NAME = "Anthropic"
def __init__(self, key, model_name, base_url=None, **kwargs):
import anthropic
self.client = anthropic.Anthropic(api_key=key)
self.model_name = model_name
self.system = ""
self.max_tokens = 8192
if "haiku" in self.model_name or "opus" in self.model_name:
self.max_tokens = 4096
Base.__init__(self, **kwargs)
def _image_prompt(self, text, images):
if not images:
return text
pmpt = [{"type": "text", "text": text}]
for img in images:
pmpt.append({
"type": "image",
"source": {
"type": "base64",
"media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"),
"data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img)
},
}
)
return pmpt
def describe(self, image):
b64 = self.image2base64(image)
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=self.prompt(b64))
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
def describe_with_prompt(self, image, prompt=None):
b64 = self.image2base64(image)
prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
def _clean_conf(self, gen_conf):
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
if "max_token" in gen_conf:
gen_conf["max_tokens"] = self.max_tokens
return gen_conf
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
gen_conf = self._clean_conf(gen_conf)
ans = ""
try:
response = self.client.messages.create(
model=self.model_name,
messages=self._form_history(system, history, images),
system=system,
stream=False,
**gen_conf,
).to_dict()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return (
ans,
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
gen_conf = self._clean_conf(gen_conf)
total_tokens = 0
try:
response = self.client.messages.create(
model=self.model_name,
messages=self._form_history(system, history, images),
system=system,
stream=True,
**gen_conf,
)
think = False
for res in response:
if res.type == "content_block_delta":
if res.delta.type == "thinking_delta" and res.delta.thinking:
if not think:
yield "<think>"
think = True
yield res.delta.thinking
total_tokens += num_tokens_from_string(res.delta.thinking)
elif think:
yield "</think>"
else:
yield res.delta.text
total_tokens += num_tokens_from_string(res.delta.text)
except Exception as e:
yield "\n**ERROR**: " + str(e)
yield total_tokens
class GoogleCV(AnthropicCV, GeminiCV):
_FACTORY_NAME = "Google Cloud"
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
import base64
from google.oauth2 import service_account
key = json.loads(key)
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
project_id = key.get("google_project_id", "")
region = key.get("google_region", "")
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
self.model_name = model_name
self.lang = lang
if "claude" in self.model_name:
from anthropic import AnthropicVertex
from google.auth.transport.requests import Request
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
request = Request()
credits.refresh(request)
token = credits.token
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
else:
self.client = AnthropicVertex(region=region, project_id=project_id)
else:
import vertexai.generative_models as glm
from google.cloud import aiplatform
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token)
aiplatform.init(credentials=credits, project=project_id, location=region)
else:
aiplatform.init(project=project_id, location=region)
self.client = glm.GenerativeModel(model_name=self.model_name)
Base.__init__(self, **kwargs)
def describe(self, image):
if "claude" in self.model_name:
return AnthropicCV.describe(self, image)
else:
return GeminiCV.describe(self, image)
def describe_with_prompt(self, image, prompt=None):
if "claude" in self.model_name:
return AnthropicCV.describe_with_prompt(self, image, prompt)
else:
return GeminiCV.describe_with_prompt(self, image, prompt)
2025-11-04 16:06:36 +08:00
def chat(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
if "claude" in self.model_name:
return AnthropicCV.chat(self, system, history, gen_conf, images)
else:
return GeminiCV.chat(self, system, history, gen_conf, images)
2025-11-04 16:06:36 +08:00
def chat_streamly(self, system, history, gen_conf, images=None):
2025-10-13 13:18:03 +08:00
if "claude" in self.model_name:
for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
yield ans
else:
for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
yield ans